The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs ha...The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance.展开更多
In order to give a true reflection of the spatial structure of woven fabric, a circular mathematical model is established based on the Peirce's model and the principle of the coordinate transformation. The circular m...In order to give a true reflection of the spatial structure of woven fabric, a circular mathematical model is established based on the Peirce's model and the principle of the coordinate transformation. The circular model uses arcs and tangent lines as the yarn flexion shape and selects the circle as the yarn cross-section. Then, a new elliptical cross-section mathematical model is rapidly built by the Jaeobian transformation of the circular model. The Matiab software is used for the 3D simulation. It is shown that 3D simulations of woven fabrics with different weft and warp yarn counts, weft and warp densities, structure phases, weaves and flattening coefficients are successfully realized by Matiab basing on the elliptical mathematical model.展开更多
We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be...We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be used while the remaining two do not represent the solutions of the crucial differential equation. We show that a kinkbtype soliton moves along MTs. Besides this solution, we also discuss a few more solutions that may or may not have physical meanings. Finally, we show what kind of ODE can be solved by using JEFs.展开更多
In this work, the extended Jacobian elliptic function expansion method is used as the first time to evaluate the exact traveling wave solutions of nonlinear evolution equations. The validity and reliability of the met...In this work, the extended Jacobian elliptic function expansion method is used as the first time to evaluate the exact traveling wave solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to nano-solitons of ionic waves propagation along microtubules in living cells and nano-ionic currents of MTs which play an important role in biology.展开更多
The elliptical cross-section spiral equal-channel extrusion (ECSEE) process is simulated by using Deform-3D finite element software. The ratio m of major-axis to minor-axis length for ellipse-cross-section, the tors...The elliptical cross-section spiral equal-channel extrusion (ECSEE) process is simulated by using Deform-3D finite element software. The ratio m of major-axis to minor-axis length for ellipse-cross-section, the torsion angle u, the round-ellipse cross-section transitional channel L1, the elliptical rotation cross-section transitional channel L2 and the ellipse-round cross-section transitional channel L3 are destined for the extrusion process parameters. The average effective strain eave on cross-section of blank, the deformation uniformity coefficient a and the value of maximum damage dmax are chosen to be the optimize indexes, and the virtual orthogonal experiment of L16 (45) is designed. The correlation degree of the process factors affecting eave, a and dmax is analyzed by the numerical simulation results using the weights and grey association model. The process parameters are optimized by introducing the grey situation decision theory and the ECSEE optimal combination of process parameters is obtained: u of 120 , m of 1.55, L1 of 7 mm, L2 of 10 mm, and L3 of 10 mm. Simulation and experimental results show that the material can be refined with the optimized structural parameters of die. Therefore, the optimization results are satisfactory.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 11772269, 11802248, and 11872318)。
文摘The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance.
文摘In order to give a true reflection of the spatial structure of woven fabric, a circular mathematical model is established based on the Peirce's model and the principle of the coordinate transformation. The circular model uses arcs and tangent lines as the yarn flexion shape and selects the circle as the yarn cross-section. Then, a new elliptical cross-section mathematical model is rapidly built by the Jaeobian transformation of the circular model. The Matiab software is used for the 3D simulation. It is shown that 3D simulations of woven fabrics with different weft and warp yarn counts, weft and warp densities, structure phases, weaves and flattening coefficients are successfully realized by Matiab basing on the elliptical mathematical model.
基金Project supported by Serbian Ministry of Education and Sciences (Grant No.III45010)UGC,NBHM,India (major research projects)+2 种基金BRNS,India (Young Scientist Research Award)ICTP,Italy (Junior Associateship)UGC (Rajiv Gandhi National Fellowship)
文摘We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be used while the remaining two do not represent the solutions of the crucial differential equation. We show that a kinkbtype soliton moves along MTs. Besides this solution, we also discuss a few more solutions that may or may not have physical meanings. Finally, we show what kind of ODE can be solved by using JEFs.
文摘In this work, the extended Jacobian elliptic function expansion method is used as the first time to evaluate the exact traveling wave solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to nano-solitons of ionic waves propagation along microtubules in living cells and nano-ionic currents of MTs which play an important role in biology.
基金co-supported by National Natural Science Foundation of China (No. 51275414)Aeronautical Science Foundation of China (No. 2011ZE53059)+1 种基金National Defense Basic Research Program (No. 51318040105)Graduate Starting Seed Fund of Northwestern Polytechnical University(No. Z2011006)
文摘The elliptical cross-section spiral equal-channel extrusion (ECSEE) process is simulated by using Deform-3D finite element software. The ratio m of major-axis to minor-axis length for ellipse-cross-section, the torsion angle u, the round-ellipse cross-section transitional channel L1, the elliptical rotation cross-section transitional channel L2 and the ellipse-round cross-section transitional channel L3 are destined for the extrusion process parameters. The average effective strain eave on cross-section of blank, the deformation uniformity coefficient a and the value of maximum damage dmax are chosen to be the optimize indexes, and the virtual orthogonal experiment of L16 (45) is designed. The correlation degree of the process factors affecting eave, a and dmax is analyzed by the numerical simulation results using the weights and grey association model. The process parameters are optimized by introducing the grey situation decision theory and the ECSEE optimal combination of process parameters is obtained: u of 120 , m of 1.55, L1 of 7 mm, L2 of 10 mm, and L3 of 10 mm. Simulation and experimental results show that the material can be refined with the optimized structural parameters of die. Therefore, the optimization results are satisfactory.