期刊文献+
共找到3,991篇文章
< 1 2 200 >
每页显示 20 50 100
基于Elman动态神经网络的降雨—径流模拟研究 被引量:6
1
作者 邵月红 林炳章 +1 位作者 叶金印 刘永和 《大气科学学报》 CSCD 北大核心 2014年第2期223-228,共6页
采用Elman动态神经网络对沂沭河流域上游临沂子流域日径流量进行模拟。为了更好地检验该网络估测径流的精度,同时采用陆面水文过程模型TOPX进行对比分析。确定性线系数、相关系数、平均相对误差和平均相对均方根误差四个统计指数及流域... 采用Elman动态神经网络对沂沭河流域上游临沂子流域日径流量进行模拟。为了更好地检验该网络估测径流的精度,同时采用陆面水文过程模型TOPX进行对比分析。确定性线系数、相关系数、平均相对误差和平均相对均方根误差四个统计指数及流域径流过程。结果表明,Elman动态神经网络能够对日径流量进行较好的模拟,较好地捕捉洪峰流量和出现时间,为降雨径流模拟提供了一种有效可靠的方法。 展开更多
关键词 elman神经网络 TOPX 降雨一径流
下载PDF
基于Elman动态神经网络的土壤墒情预测研究 被引量:1
2
作者 邵月红 刘永和 《水土保持通报》 CSCD 北大核心 2012年第5期257-260,共4页
土壤墒情是一个非线性、时空异质性和动态不确定过程,利用Elman动态神经网络对研究区临沂站和平邑站土壤水分含量进行了预测。结果表明,所建立的网络模型能够对土壤墒情进行成功模拟,预测的土壤水分值与观测值吻合得较好,模拟精度较高... 土壤墒情是一个非线性、时空异质性和动态不确定过程,利用Elman动态神经网络对研究区临沂站和平邑站土壤水分含量进行了预测。结果表明,所建立的网络模型能够对土壤墒情进行成功模拟,预测的土壤水分值与观测值吻合得较好,模拟精度较高。临沂站和平邑站模拟土壤墒情的平均绝对误差分别为1.08%和1.07%,平均相对误差为10.2%和11.0%。Elman动态神经网络模型利用其独特的非线性、非凸性和适应时变特性的能力从时空变率复杂的土壤水分运移系统中找出一定的演变规律,为土壤水分预测提供了一种有效可靠的方法。为了更好地验证该方法的优越性,还需要更多的样本数据,更多的区域和更全面的敏感影响因素来验证,以及更深层次的理论研究和分析。 展开更多
关键词 elman神经网络 土壤 墒情预测
下载PDF
一种基于小波分析和Elman动态神经网络的中长期电力负荷预测方法 被引量:6
3
作者 赵智勇 黄伟 尉扬 《山西电力》 2013年第1期1-5,共5页
针对传统静态神经网络自适应能力差、收敛速度慢、预测精度低的问题,提出了一种基于小波分析和Elman动态神经网络的中长期电力负荷预测方法,该算法通过对原始样本进行小波分解,将分解后的低频趋势信号和高频细节信号分别进行预测,在输... 针对传统静态神经网络自适应能力差、收敛速度慢、预测精度低的问题,提出了一种基于小波分析和Elman动态神经网络的中长期电力负荷预测方法,该算法通过对原始样本进行小波分解,将分解后的低频趋势信号和高频细节信号分别进行预测,在输出端再进行重构后得到预测曲线;然后就传统负荷预测问题中数据预处理环节的数据校验问题,提出了一种基于小波理论的奇异点检测法,该方法对原始样本进行一维离散小波分解,抽取一层高频细节信号进行分析,根据工程实践中设置的阈值,来检测有可能因为系统故障、人为失误导致的数据记录错误,为准确预测提供了保障。 展开更多
关键词 中长期负荷预测 小波分析 elman神经网络
下载PDF
基于图卷积神经网络的WSN零动态攻击检测方法
4
作者 崔玉礼 黄丽君 《太原学院学报(自然科学版)》 2025年第1期78-84,共7页
零动态攻击与一般攻击方式相比,隐蔽性更强,因此更不容易被发现。以往常规的检测方法在检测这种攻击方式时,漏检率和误检率较高。针对上述问题,研究一种基于图卷积神经网络的WSN零动态攻击检测方法。基于零动态攻击原理,以信道状态信息... 零动态攻击与一般攻击方式相比,隐蔽性更强,因此更不容易被发现。以往常规的检测方法在检测这种攻击方式时,漏检率和误检率较高。针对上述问题,研究一种基于图卷积神经网络的WSN零动态攻击检测方法。基于零动态攻击原理,以信道状态信息作为采集源,利用CSI-Tools工具实现CSI数据包采集。从CSI数据包中分离出幅值数据和相位数据,针对前者实施去噪处理,针对后者实施校准处理。从幅值数据和相位数据中提取4个特征,以特征为输入,构建图结构,利用图卷积神经网络实现无线传感网络零动态攻击检测。结果表明:基于图卷积神经网络的攻击检测方法的漏检率和误检率相对更低,由此说明该方法对零动态攻击检测更为有效,能够实现更为准确的检测。 展开更多
关键词 图卷积神经网络 无线传感网络 CSI数据 动态攻击
下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:3
5
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 elman神经网络 预测 模拟退火 鲸鱼优化算法
下载PDF
基于BP神经网络的非线性流域UUV动态回收过程预测 被引量:1
6
作者 杜晓旭 李瀚宇 刘鑫 《西北工业大学学报》 EI CAS CSCD 北大核心 2024年第2期189-196,共8页
针对水下无人自主航行器(UUV)回收过程中流域存在非线性干扰问题,提出了一种基于BP神经网络优化UUV回收路径的闭环控制方法。采用计算流体力学(CFD)方法模拟UUV相对于潜艇以不同路径进行回收的水动力系数,将数值模拟结果作为训练BP神经... 针对水下无人自主航行器(UUV)回收过程中流域存在非线性干扰问题,提出了一种基于BP神经网络优化UUV回收路径的闭环控制方法。采用计算流体力学(CFD)方法模拟UUV相对于潜艇以不同路径进行回收的水动力系数,将数值模拟结果作为训练BP神经网络的初始数据,利用拉丁超立方法对非线性流域的位置随机采样,采用神经网络输出UUV在采样处的水动力系数,实现非线性流域内UUV动态回收过程的水动力系数预测。结果表明:通过均方根检验神经网络预测水动力系数误差均在10%范围内。将神经网络预测结果与UUV纵向操纵性方程结合,对比回收速度和操舵间隔与理论回收轨迹的误差,优化UUV动态回收路径的闭环控制方案。 展开更多
关键词 神经网络 非线性流域 水动力系数 UUV动态回收
下载PDF
基于改进SFLA-Elman神经网络的电离层杂波抑制方法
7
作者 刘强 尚尚 +2 位作者 乔铁柱 祝健 石依山 《电讯技术》 北大核心 2024年第6期848-856,共9页
针对高频地波雷达目标检测中电离层杂波的干扰问题,提出了一种基于改进混合蛙跳算法优化Elman神经网络预测抑制电离层杂波的策略。为解决混合蛙跳算法初始种群分布不均匀、收敛精度低、易陷于局部极值等问题,引入Cubic混沌映射、莱维飞... 针对高频地波雷达目标检测中电离层杂波的干扰问题,提出了一种基于改进混合蛙跳算法优化Elman神经网络预测抑制电离层杂波的策略。为解决混合蛙跳算法初始种群分布不均匀、收敛精度低、易陷于局部极值等问题,引入Cubic混沌映射、莱维飞行策略、非线性平衡因子和复制操作,增强种群多样性,提高算法搜索能力。利用改进后的算法和其他算法分别优化Elman神经网络预测抑制模型,结果表明,改进后的算法无论是在收敛精度和稳定性上,还是在临近距离单元电离层杂波的预测抑制上,都取得了显著的提升。在基本保留目标信号的基础上,平均信杂比较原始回波提升18.52 dB,较原始混合蛙跳算法提升1.08 dB,对于电离层杂波的抑制具有较高应用价值。 展开更多
关键词 高频地波雷达 电离层杂波抑制 混合蛙跳算法 elman神经网络 莱维飞行
下载PDF
基于PSO-Elman神经网络的井底风温预测模型
8
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 elman神经网络 PSO-elman
下载PDF
基于RSSR融合RNGO-Elman神经网络的室内可见光定位
9
作者 张慧颖 盛美春 +2 位作者 梁士达 马成宇 李月月 《半导体光电》 CAS 北大核心 2024年第3期449-457,共9页
针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅... 针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅助参考点的接收信号强度比值和接收机的真实位置作为训练集数据,建立不受动态环境影响的指纹数据库。针对NGO算法收敛速度慢、容易陷入局部最优等问题,利用折射反向学习策略初始化种群,增加种群多样性,引入非线性权重因子来加快收敛速度,避免陷入局部最优。使用优化后的NGO算法来优化Elman神经网络的初始权值和阈值,构建RNGO-Elman动态定位预测模型。仿真结果表明,在4m×4m×3m的实验空间下,优化后的RNGO-Elman定位模型平均定位误差为1.34cm,定位精度相较于Elman定位算法、NGO-Elman定位算法分别提高了82%,21%。在LED发射功率波动时,基于RSSR的RNGO-Elman定位误差为1.29cm,1.38cm。所提可见光定位方法具有定位精度高、定位性能稳定等优点。 展开更多
关键词 光通信 北方苍鹰算法 elman神经网络 接收信号强度比 可见光定位
下载PDF
变工况下动态卷积域对抗图神经网络故障诊断
10
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 域对抗 神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
下载PDF
动态深度神经网络的硬件加速设计及FPGA实现
11
作者 王鹏 任轶群 +1 位作者 范毓洋 张嘉诚 《电讯技术》 北大核心 2024年第3期358-365,共8页
基于现场可编程门阵列(Field Programmable Gate Array,FPGA)实现的卷积神经网络由于具有优秀的目标识别能力,广泛应用在边缘设备。然而现有的神经网络部署多基于静态模型,因此存在无效特征提取、计算量增大、帧率降低等问题。为此,提... 基于现场可编程门阵列(Field Programmable Gate Array,FPGA)实现的卷积神经网络由于具有优秀的目标识别能力,广泛应用在边缘设备。然而现有的神经网络部署多基于静态模型,因此存在无效特征提取、计算量增大、帧率降低等问题。为此,提出了动态深度神经网络的实现方法。通过引入模型定点压缩技术和并行的卷积分块方法,并结合低延迟的数据调度策略,实现了高效卷积计算。同时对神经网络动态退出机制中引入的交叉熵损失函数,提出便于硬件实现的简化方法,设计专用的加速电路。根据所提方法,在Xilinx xc7z030平台部署了具有动态深度的ResNet110网络,平台最高可完成2.78×104 MOPS(Million Operations per Second)的乘积累加运算,并支持1.25 MOPS的自然指数运算和0.125 MOPS的对数运算,相较于i7-5960x处理器加速比达到287%,相较于NVIDIA TITAN X处理器加速比达到145%。 展开更多
关键词 边缘设备 动态深度神经网络 动态退出机制 硬件加速 加速电路
下载PDF
卷积神经网络在高动态成像技术中的探讨
12
作者 王金娟 《大数据时代》 2024年第5期33-37,共5页
大数据时代,机器学习领域的研究和探索愈发广阔,基于对海量数据进行表征学习的深度学习更是发展迅猛,它利用大模型模拟人脑建立连接进行分析,学习神经网络以模仿人脑的机制,获取各种信息,分析图像获得更准确、逼真的高动态视觉信息备受... 大数据时代,机器学习领域的研究和探索愈发广阔,基于对海量数据进行表征学习的深度学习更是发展迅猛,它利用大模型模拟人脑建立连接进行分析,学习神经网络以模仿人脑的机制,获取各种信息,分析图像获得更准确、逼真的高动态视觉信息备受关注。所以在如今如火如荼的计算机视觉领域里,赋予机器以人类视觉功能对人工智能发展极其重要,采用深度学习的卷积神经网络模型去研究高动态成像技术具有较强的实际意义。 展开更多
关键词 深度学习 卷积神经网络 动态成像
下载PDF
基于动态规划与RBF神经网络的PHEV能量管理策略
13
作者 魏丽青 《汽车实用技术》 2024年第7期7-13,共7页
为提高插电式混合动力汽车燃油经济性,设计了一种基于动态规划和径向基函数(RBF)神经网络的插电式混合动力汽车能量管理策略。首先,建立了插电式混合汽车数学模型;其次,以发动机油耗最小为目标函数,采用动态规划求解全局最优的离线优化... 为提高插电式混合动力汽车燃油经济性,设计了一种基于动态规划和径向基函数(RBF)神经网络的插电式混合动力汽车能量管理策略。首先,建立了插电式混合汽车数学模型;其次,以发动机油耗最小为目标函数,采用动态规划求解全局最优的离线优化结果;最后,采用RBF神经网络对离线最优控制结果进行学习,建立了发动机输出转矩与车辆状态参数之间的非线性映射关系,得到了基于动态规划和RBF神经网络的能量管理策略。仿真结果表明,文章所提策略油耗较之于电量消耗-维持策略降低了2.92%,验证了该策略的有效性。 展开更多
关键词 插电式混合动力汽车 动态规划 RBF神经网络 能量管理
下载PDF
基于视觉的神经网络三维动态手势识别方法综述 被引量:1
14
作者 王瑞平 吴士泓 +1 位作者 张美航 王小平 《计算机科学》 CSCD 北大核心 2024年第4期193-208,共16页
动态手势识别作为一种重要的人机交互手段而受到广泛关注,其中基于视觉的识别方式因其使用便利性和低成本的优势成为新一代人机交互的首选技术。以人工神经网络为中心,综述了基于视觉的手势识别方法研究进展,分析了不同类型人工神经网... 动态手势识别作为一种重要的人机交互手段而受到广泛关注,其中基于视觉的识别方式因其使用便利性和低成本的优势成为新一代人机交互的首选技术。以人工神经网络为中心,综述了基于视觉的手势识别方法研究进展,分析了不同类型人工神经网络在手势识别中的发展现状,调研并归纳总结了待识别数据和训练数据集的类型及特点;此外,通过开展性能对比实验,客观评估了不同类型的人工神经网络,并对结果进行了分析。最后,对调研内容进行了总结,对该领域面临的挑战和存在的问题进行了阐述,对动态手势识别技术的发展趋势进行了展望。 展开更多
关键词 动态手势识别 人机交互 人工神经网络 卷积神经网络 循环神经网络 注意力机制 混合神经网络
下载PDF
基于动态神经网络NARX时间序列的双排桩基坑变形预测 被引量:1
15
作者 侯福昌 曾家俊 +2 位作者 江杰 李结全 范懿文 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第1期49-59,共11页
针对目前基于含基本假设或经验公式的传统土力学计算方法,不能有效地反映具有多因素交叉性以及时空性的基坑变形规律,而监测数据时间序列能够真实地表现基坑土体变形的演变,以南宁市亭洪路72号河南水厂住宅小区危旧房改造项目双排桩基... 针对目前基于含基本假设或经验公式的传统土力学计算方法,不能有效地反映具有多因素交叉性以及时空性的基坑变形规律,而监测数据时间序列能够真实地表现基坑土体变形的演变,以南宁市亭洪路72号河南水厂住宅小区危旧房改造项目双排桩基坑工程为依托,考虑开挖深度和土体暴露时间这2个因素对监测时间序列的影响,提出一种带有外部输入的非线性自回归(NARX)动态神经网络时间序列模型,多方位预测关键断面重要测点的竖向位移和水平位移。结果表明:预测值和实际监测数据的变化趋势具有较好的一致性,且竖向位移预测值与实际监测值的预测残差小于1.0 mm,水平位移预测残差小于0.3 mm。该模型预测效果良好,同时验证了此模型应用于双排桩基坑变形动态分析的可行性。 展开更多
关键词 动态神经网络 时间序列 预测模型 双排桩 基坑变形
下载PDF
Elman神经网络在地下水动态预测中的应用 被引量:7
16
作者 陈伟韦 卢文喜 +2 位作者 柳大伟 赵军海 王红霞 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2006年第S1期43-46,共4页
详细介绍了Elman神经网络的基本结构和数学模型,同时以地下水动态预测为例,给出用Elman神经网络建立地下水动态预测模型的方法。模型检验结果表明,该模型拟合和预测精度均较高,可应用于地下水动态系统的建模,借此说明Elman网络在地下水... 详细介绍了Elman神经网络的基本结构和数学模型,同时以地下水动态预测为例,给出用Elman神经网络建立地下水动态预测模型的方法。模型检验结果表明,该模型拟合和预测精度均较高,可应用于地下水动态系统的建模,借此说明Elman网络在地下水动态预报中的可行性,并为Elman网络技术在水文水资源领域的动态模拟应用提供借鉴。 展开更多
关键词 elman神经网络 地下水 动态建模
下载PDF
基于滑坡监测数据的Elman神经网络动态预测 被引量:21
17
作者 李寻昌 叶君文 +1 位作者 李葛 李俊 《煤田地质与勘探》 CAS CSCD 北大核心 2018年第3期113-120,126,共9页
滑坡在我国是一种极为频发的地质灾害,且其积累位移监测曲线有着复杂的非线性特性,对此各研究者建立过许多预测模型,然而这些模型的预测精度不尽如人意。基于Elman神经网络可以任意精度逼近任意非线性函数的特征,并以sigmoid为方程的核... 滑坡在我国是一种极为频发的地质灾害,且其积累位移监测曲线有着复杂的非线性特性,对此各研究者建立过许多预测模型,然而这些模型的预测精度不尽如人意。基于Elman神经网络可以任意精度逼近任意非线性函数的特征,并以sigmoid为方程的核函数,在选择隐含层数时用了试用法,通过"3δ"法及归一化工程实例滑坡累积位移数据,建立了Elman神经网络动态预测模型。基于该模型对多个监测点数据进行动态预测,结果表明该模型的预测结果与实测数据的吻合度较高,且平均误差为1.78%,预测精度较高,验证了Elman神经网络能够在预测滑坡灾害中发挥一定作用。 展开更多
关键词 elman神经网络 3δ法 动态预测 核函数
下载PDF
基于Elman神经网络的非线性动态系统辨识 被引量:13
18
作者 高钦和 王孙安 《计算机工程与应用》 CSCD 北大核心 2007年第31期87-89,共3页
研究了应用动态递归神经网络实现动态系统辨识的原理和方法,在没有被辨识对象的先验知识情况下,通过改进的El-man网络实现了非线性动态系统的辨识。仿真结果表明,与前馈网络相比,Elman网络具有学习速度快、泛化能力强的特点,可用较小的... 研究了应用动态递归神经网络实现动态系统辨识的原理和方法,在没有被辨识对象的先验知识情况下,通过改进的El-man网络实现了非线性动态系统的辨识。仿真结果表明,与前馈网络相比,Elman网络具有学习速度快、泛化能力强的特点,可用较小的网络结构实现高阶系统的辨识,适用于具有本质非线性动态系统的辨识。 展开更多
关键词 非线性系统辨识 动态系统 动态递归神经网络 elman网络
下载PDF
Elman动态递归神经网络在树木生长预测中的应用 被引量:16
19
作者 刘永霞 冯仲科 杜鹏志 《北京林业大学学报》 CAS CSCD 北大核心 2007年第6期99-103,共5页
该文充分考虑树木生长所特有的动态性、随机性和非线性,以及Elman动态递归模型的结构特点,获取北京山区油松解析木生长数据,分别建立了Elman型树木胸径生长和树高生长的神经网络动态模型.研究表明,Elman动态递归模型对非线性问题建模具... 该文充分考虑树木生长所特有的动态性、随机性和非线性,以及Elman动态递归模型的结构特点,获取北京山区油松解析木生长数据,分别建立了Elman型树木胸径生长和树高生长的神经网络动态模型.研究表明,Elman动态递归模型对非线性问题建模具有很好的拟和性和仿真性,其中,用于胸径生长建模时,其拟和精度达到99.45%,仿真精度达到99.42%;用于树高生长建模时,拟和精度达到97.30%,仿真精度达到97.29%,而且其拟和和仿真曲线均为"S"形,符合树木生长规律.进一步对Elman动态模型和常规BP静态模型比较发现,Elman模型具有更好的拟和性、预测性和稳定性. 展开更多
关键词 树木生长模型 elman型胸径动态模型 elman型树高动态模型 BP网络 非线性拟和 北京山区 油松
下载PDF
基于Elman神经网络的表层岩溶泉动态预测及应用——以广西平果县果化镇布洋1号表层岩溶泉为例 被引量:5
20
作者 柳大伟 蒋忠诚 陈伟韦 《中国岩溶》 CAS CSCD 北大核心 2007年第1期71-74,共4页
基于Elman网络基本原理,建立了布洋1号表层岩溶泉Elman神经网络模型,并以2005年8月2日开始的一次衰减过程为例,详述了Elman神经网络模型应用分析过程,给出了在无降雨影响下该次衰减过程具有的总排泄量及最佳的储水时间。经检验,该模型... 基于Elman网络基本原理,建立了布洋1号表层岩溶泉Elman神经网络模型,并以2005年8月2日开始的一次衰减过程为例,详述了Elman神经网络模型应用分析过程,给出了在无降雨影响下该次衰减过程具有的总排泄量及最佳的储水时间。经检验,该模型预测精度较高,为布洋1号表层岩溶泉水资源的科学利用提供了依据,同时也为Elman网络技术在表层岩溶泉动态系统的其它领域应用提供了借鉴。 展开更多
关键词 elman神经网络 表层岩溶泉 动态建模 衰减分析
下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部