期刊文献+
共找到3,859篇文章
< 1 2 193 >
每页显示 20 50 100
基于多核循环神经网络的无线网络安全态势感知
1
作者 李阳 杨帆 《信息记录材料》 2025年第1期21-22,62,共3页
针对现有感知方法波动大的问题,本研究采用多核循环神经网络进行无线网络安全态势感知。模型结合长短时记忆捕捉时序关系,选取关键特征向量属性,并引入三方博弈模拟相互作用,计算网络安全态势值。通过与阈值比较,划分态势等级。实验表明... 针对现有感知方法波动大的问题,本研究采用多核循环神经网络进行无线网络安全态势感知。模型结合长短时记忆捕捉时序关系,选取关键特征向量属性,并引入三方博弈模拟相互作用,计算网络安全态势值。通过与阈值比较,划分态势等级。实验表明,该方法随着融合次数增加,能更快达到稳定状态,提升用户感知的一致性和准确性。在应对网络攻击和数据一致性保障方面展现出有效性。 展开更多
关键词 多核 循环神经网络 无线网络 态势感知
下载PDF
基于注意力循环神经网络的联合深度推荐模型
2
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
下载PDF
基于循环神经网络的多模态数据层次化缓存系统设计
3
作者 张燕 《现代电子技术》 北大核心 2025年第4期52-56,共5页
为提升对多模态数据的管理效果,提高数据访问速度并减轻数据库负载,设计一种基于循环神经网络的多模态数据层次化缓存系统。在DRAM/NVM混合内存模块中,利用DRAM完成主存NVM的缓存。当DRAM存在缓存缺失时,利用访问监控模块内置高速采集... 为提升对多模态数据的管理效果,提高数据访问速度并减轻数据库负载,设计一种基于循环神经网络的多模态数据层次化缓存系统。在DRAM/NVM混合内存模块中,利用DRAM完成主存NVM的缓存。当DRAM存在缓存缺失时,利用访问监控模块内置高速采集卡来采集NVM上频繁访问4 KB数据块的历史访问记录,再将历史访问记录编码为访问向量后构建训练集,作为长短期记忆(LSTM)网络的输入,用于预测访问频率。在缓存过滤模块中,将访问频率预测结果高于设定阈值部分的4 KB多模态数据读取到DRAM中进行缓存。实验结果显示:所设计系统可最大程度地降低系统带宽占用情况,TLB缺失率低,缓存执行效率较高,面对大页面具备显著缓存优势。 展开更多
关键词 多模态数据 层次化缓存 循环神经网络 长短期记忆(LSTM)网络 DRAM NVM 访问频率
下载PDF
基于循环神经网络的土地利用变化与驱动力分析——以山东日照为例
4
作者 徐楠 解军 +2 位作者 冯中萍 李莉 王靖伟 《山东国土资源》 2025年第1期63-70,共8页
为深入探讨日照市土地利用/覆盖变化的规律,本文利用循环神经网络模型对其2019—2023年期间土地利用/覆盖进行遥感影像分类,并基于分类结果研究分析了多种驱动因子与土地利用/覆盖变化之间的关系。结果表明,循环神经网络在处理遥感影像... 为深入探讨日照市土地利用/覆盖变化的规律,本文利用循环神经网络模型对其2019—2023年期间土地利用/覆盖进行遥感影像分类,并基于分类结果研究分析了多种驱动因子与土地利用/覆盖变化之间的关系。结果表明,循环神经网络在处理遥感影像数据方面表现出色,5年的测试总体精度均超过92%,Kappa系数均超过0.84;并且在驱动力分析方面,城镇化率、生产总值和一般公共预算支出因素对日照市土地利用/覆盖变化有显著影响,改变土地资源的分配和使用。研究结果不仅揭示了日照市城市化和经济增长对土地利用/覆盖的深远影响,也为未来的土地管理和规划提供了有价值的参考。 展开更多
关键词 土地利用/覆盖 循环神经网络 驱动力分析 日照市
下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:3
5
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 elman神经网络 预测 模拟退火 鲸鱼优化算法
下载PDF
混合图神经网络和门控循环网络的短期光伏功率预测 被引量:1
6
作者 殷豪 李奕甸 +3 位作者 谢智锋 于慧 张展 王懿华 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期523-532,共10页
为了能从大量历史光伏发电数据中提取出有效的时序特征以及在非欧几里得域中的关联,建立了基于混合图神经网络以及门控循环网络的短期光伏功率预测模型。该模型首先通过最邻近分类算法生成气象及出力数据的最邻近图,再将其结合图神经网... 为了能从大量历史光伏发电数据中提取出有效的时序特征以及在非欧几里得域中的关联,建立了基于混合图神经网络以及门控循环网络的短期光伏功率预测模型。该模型首先通过最邻近分类算法生成气象及出力数据的最邻近图,再将其结合图神经网络作为编码器对气象及出力数据进行编码形成时间序列,最后通过门控循环网络以及全连接层解码输出光伏功率预测结果。通过仿真分析验证,该模型具有更优的特征挖掘能力和分析性能,能更好地突出某时间节点的气象及出力数据特征,适应天气突变带来特征变化,从而提升光伏预测整体模型的表达能力。 展开更多
关键词 神经网络 深度学习 光伏发电 功率预测 门控循环网络
下载PDF
基于改进门控循环神经网络的采煤机滚筒调高量预测 被引量:1
7
作者 齐爱玲 王雨 马宏伟 《工矿自动化》 CSCD 北大核心 2024年第2期116-123,共8页
采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采... 采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采用定长滑动时间窗法对获取的采煤机滚筒高度数据进行预处理,将输入数据划分为连续、大小可调的子序列,同时处理横向、纵向的特征信息。为提高模型预测效率,满足循环截割的实时性要求,提出了一种用因果卷积改进的门控循环神经网络(CC-GRU),对输入数据进行双重特征提取和双重数据过滤。CC-GRU利用因果卷积提前聚焦序列纵向的局部时间特征,以减少计算成本,提高运算速度;利用门控机制对卷积得到的特征进行序列化建模,以捕捉元素之间的长期依赖关系。实验结果表明,采用CC-GRU模型对采煤机滚筒调高量进行预测,平均绝对误差(MAE)为43.80 mm,平均绝对百分比误差(MAPE)为1.90%,均方根误差(RMSE)为50.35 mm,决定系数为0.65,预测时间仅为0.17 s;相比于长短时记忆(LSTM)神经网络、GRU、时域卷积网络(TCN),CC-GRU模型的预测速度较快且预测精度较高,能够更准确地对采煤机调高轨迹进行实时预测,为工作面煤层模型的建立和采煤机调高轨迹的预测提供了依据。 展开更多
关键词 采煤机 滚筒调高 煤岩识别 深度学习 门控循环神经网络 因果卷积
下载PDF
联合张量补全与循环神经网络的时间序列插补法 被引量:1
8
作者 何军 赖赵远 时勘 《数据采集与处理》 CSCD 北大核心 2024年第3期598-608,共11页
现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,... 现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,本文提出了联合张量补全与循环神经网络的时间序列插补法。首先,将多元时间序列建模成张量,通过张量的低秩补全捕获不同时间序列之间的关系。其次,提出了一个基于时间的动态权重,将张量插补结果和循环神经网络的预测结果进行融合,避免因为连续缺失导致的预测误差累积。最后,在多个真实的时间序列数据集上对所提方法进行了实验评估,结果显示该模型优于已有相关模型,且基于插补后的时间序列可以提升时间序列预测效果。 展开更多
关键词 张量补全 时间序列插补 循环神经网络
下载PDF
LDACS系统基于循环谱和残差神经网络的频谱感知方法 被引量:1
9
作者 王磊 张劲 叶秋炫 《系统工程与电子技术》 EI CSCD 北大核心 2024年第9期3231-3238,共8页
针对L波段数字航空通信系统(L-band digital aeronautic communication system,LDACS)可用频谱资源有限且易受大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出一种基于降维循环谱和残差神经网络的频谱感知方法。首... 针对L波段数字航空通信系统(L-band digital aeronautic communication system,LDACS)可用频谱资源有限且易受大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出一种基于降维循环谱和残差神经网络的频谱感知方法。首先理论推导分析了DME信号的循环谱特征;然后利用Fisher判别率(Fisher discriminant rate,FDR)提取循环频率能量最大的向量,通过主成分分析(principal component analysis,PCA)进行预处理特征增强;最后给出数据处理后的循环谱向量与卷积神经网络相结合的实现过程,实现了DME信号的有效检测。仿真结果表明,该方法对噪声不敏感,当信噪比不低于-15 dB时,平均检测概率大于90%。当信噪比不低于-14 dB,检测概率接近100%。 展开更多
关键词 L波段数字航空通信系统 测距仪 频谱感知 循环 残差神经网络
下载PDF
基于时钟循环神经网络的光伏故障诊断 被引量:2
10
作者 林永君 张世成 +1 位作者 杨凯 李静 《山东电力技术》 2024年第1期52-58,76,共8页
光伏电站大多地处恶劣环境,遭受风沙雨雪腐蚀,电池板容易出现多类型故障,如何对故障进行有效识别与定位尤为重要。为此,提出了一种基于时钟循环神经网络(clockwork-recurrent neural network,CW-RNN)的光伏故障诊断策略。首先,建立了光... 光伏电站大多地处恶劣环境,遭受风沙雨雪腐蚀,电池板容易出现多类型故障,如何对故障进行有效识别与定位尤为重要。为此,提出了一种基于时钟循环神经网络(clockwork-recurrent neural network,CW-RNN)的光伏故障诊断策略。首先,建立了光伏阵列系统仿真模型,分析了光伏发电故障的成因,模拟了不同故障下的光伏阵列输出特征;其次,采用CW-RNN方法建立了故障诊断模型,对光伏阵列故障进行识别与定位;最后,基于实时数据库系统搭建了光伏发电故障分析平台,对所提出的故障诊断模型性能进行验证,结果表明其有效性和准确性,对光伏电站高效地进行故障准确识别与定位具有一定参考意义。 展开更多
关键词 光伏阵列 故障诊断 时钟循环神经网络算法 数据库 仿真平台
下载PDF
循环神经网络模型下道路碳排放浓度预测 被引量:1
11
作者 张丽莉 唐明冬 《交通科技与经济》 2024年第2期23-30,共8页
以湖南省永州市永州大道基本路段CO_(2)浓度时序数据为研究对象,旨在实现道路CO_(2)浓度的实时预测。测得用于模型训练和预测精度计算的路段CO_(2)浓度数据,利用Savitzky-Golay滤波器对数据进行平滑去噪,在调试并建立循环神经网络最优... 以湖南省永州市永州大道基本路段CO_(2)浓度时序数据为研究对象,旨在实现道路CO_(2)浓度的实时预测。测得用于模型训练和预测精度计算的路段CO_(2)浓度数据,利用Savitzky-Golay滤波器对数据进行平滑去噪,在调试并建立循环神经网络最优模型结构的基础上,引入多元预测模型(MLR、SVR、BP)和时序预测模型(BP、RF、RNN、LSTM、GRU)进行预测性能对比,为路段CO_(2)浓度的实时预测提供参照。结果表明:时序预测模型相比于多元预测模型具有更好的预测效果,特别是循环神经网络模型中的GRU表现出较高的预测精度,其次是LSTM,最后是RNN;循环神经网络模型在处理路段CO_(2)浓度时序数据的训练和预测任务中具备突出性能,能够实时且精准预测道路路段CO_(2)浓度。 展开更多
关键词 综合运输 碳排放浓度 循环神经网络 时序数据 交通碳排放
下载PDF
基于改进SFLA-Elman神经网络的电离层杂波抑制方法
12
作者 刘强 尚尚 +2 位作者 乔铁柱 祝健 石依山 《电讯技术》 北大核心 2024年第6期848-856,共9页
针对高频地波雷达目标检测中电离层杂波的干扰问题,提出了一种基于改进混合蛙跳算法优化Elman神经网络预测抑制电离层杂波的策略。为解决混合蛙跳算法初始种群分布不均匀、收敛精度低、易陷于局部极值等问题,引入Cubic混沌映射、莱维飞... 针对高频地波雷达目标检测中电离层杂波的干扰问题,提出了一种基于改进混合蛙跳算法优化Elman神经网络预测抑制电离层杂波的策略。为解决混合蛙跳算法初始种群分布不均匀、收敛精度低、易陷于局部极值等问题,引入Cubic混沌映射、莱维飞行策略、非线性平衡因子和复制操作,增强种群多样性,提高算法搜索能力。利用改进后的算法和其他算法分别优化Elman神经网络预测抑制模型,结果表明,改进后的算法无论是在收敛精度和稳定性上,还是在临近距离单元电离层杂波的预测抑制上,都取得了显著的提升。在基本保留目标信号的基础上,平均信杂比较原始回波提升18.52 dB,较原始混合蛙跳算法提升1.08 dB,对于电离层杂波的抑制具有较高应用价值。 展开更多
关键词 高频地波雷达 电离层杂波抑制 混合蛙跳算法 elman神经网络 莱维飞行
下载PDF
基于模型嵌入循环神经网络的损伤识别方法
13
作者 翁顺 雷奥琦 +3 位作者 陈志丹 于虹 颜永逸 余兴胜 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期21-29,共9页
目前,绝大多数基于深度学习的结构损伤识别方法依靠深度神经网络自动提取结构的损伤敏感特征,并通过损伤状态之间特征的差异实现模式分类识别.然而,这些方法面临着损伤量化难度大的挑战,并且需要大量的模型训练数据.本文提出基于模型嵌... 目前,绝大多数基于深度学习的结构损伤识别方法依靠深度神经网络自动提取结构的损伤敏感特征,并通过损伤状态之间特征的差异实现模式分类识别.然而,这些方法面临着损伤量化难度大的挑战,并且需要大量的模型训练数据.本文提出基于模型嵌入循环神经网络(Model-Embedding Recurrent Neural Network,MERNN)的损伤识别方法.首先,通过数据驱动的卷积神经网络(Convolutional Neural Network,CNN)建立荷载-响应之间的映射关系,然后,利用龙格库塔法改进传统的循环神经网络,建立基于循环神经网络架构的数值计算单元.最后,基于结构响应计算值与实测响应残差构成的损失函数与神经网络的自动微分机制来实现结构刚度参数的更新,进而实现结构损伤识别.数值模拟框架与实验室的3层剪切型框架的损伤识别结果表明,本文提出的方法能基于少量响应数据准确量化结构损伤. 展开更多
关键词 循环神经网络 龙格库塔法 损伤识别
下载PDF
基于PSO-Elman神经网络的井底风温预测模型
14
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 elman神经网络 PSO-elman
下载PDF
基于RSSR融合RNGO-Elman神经网络的室内可见光定位
15
作者 张慧颖 盛美春 +2 位作者 梁士达 马成宇 李月月 《半导体光电》 CAS 北大核心 2024年第3期449-457,共9页
针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅... 针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅助参考点的接收信号强度比值和接收机的真实位置作为训练集数据,建立不受动态环境影响的指纹数据库。针对NGO算法收敛速度慢、容易陷入局部最优等问题,利用折射反向学习策略初始化种群,增加种群多样性,引入非线性权重因子来加快收敛速度,避免陷入局部最优。使用优化后的NGO算法来优化Elman神经网络的初始权值和阈值,构建RNGO-Elman动态定位预测模型。仿真结果表明,在4m×4m×3m的实验空间下,优化后的RNGO-Elman定位模型平均定位误差为1.34cm,定位精度相较于Elman定位算法、NGO-Elman定位算法分别提高了82%,21%。在LED发射功率波动时,基于RSSR的RNGO-Elman定位误差为1.29cm,1.38cm。所提可见光定位方法具有定位精度高、定位性能稳定等优点。 展开更多
关键词 光通信 北方苍鹰算法 elman神经网络 接收信号强度比 可见光定位
下载PDF
基于改进循环神经网络的半导体质量预测
16
作者 杨帆 胡志栋 《中国新技术新产品》 2024年第13期12-14,共3页
在复杂的半导体生产过程中,为了减少成本、缩短周期,须优化质量检测过程。本文对半导体的生产特点进行分析,结合数据预测的深度学习理念,构建基于长短期记忆网络(Long Short-Term Memory,LSTM)的质量预测模型。与基础预测模型相比,该模... 在复杂的半导体生产过程中,为了减少成本、缩短周期,须优化质量检测过程。本文对半导体的生产特点进行分析,结合数据预测的深度学习理念,构建基于长短期记忆网络(Long Short-Term Memory,LSTM)的质量预测模型。与基础预测模型相比,该模型考虑在复杂加工过程中使用的不同工具,引入工具识别模块。改进后的模型提高了质量预测的准确性和预测能力。对薄膜晶体管液晶显示器(TFT-LCD)的生产数据进行验证,本文方法预测结果更接近真实值,均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)2类指标均大幅度降低。 展开更多
关键词 半导体 质量 改进循环神经网络
下载PDF
基于循环神经网络的2-DOF软体机械臂运动建模与控制
17
作者 丁卫 郑云 +1 位作者 钟宋义 杨扬 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期522-531,共10页
因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、... 因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、负载下的位置坐标,并将其导入门控循环单元(gated recurrentunit,GRU)神经网络模型进行训练.当调节超参数至网络结构最优时,测试集准确度可达98.87%.在此基础上,构建气压与负载到末端位置的映射函数.实验结果表明,本方法可将机械臂的控制精度提升至6»8 mm,显著降低了软体机器人的控制与建模难度. 展开更多
关键词 循环神经网络 门控循环单元模型 软体机械臂 建模与控制
下载PDF
基于循环神经网络的GDP预测研究与分析
18
作者 白斌丽 吴年祥 《安徽水利水电职业技术学院学报》 2024年第1期85-90,共6页
GDP(Gross Domestic Product)和人均GDP是一个国家经济实力的标志性指标,反映一个国家经济发展状况。通过世界银行提供各国1976年以来的GDP和人均GDP数据对LSTM(Long Short-Term Memory)网络进行了训练,用训练好的LSTM网络对6个国家的人... GDP(Gross Domestic Product)和人均GDP是一个国家经济实力的标志性指标,反映一个国家经济发展状况。通过世界银行提供各国1976年以来的GDP和人均GDP数据对LSTM(Long Short-Term Memory)网络进行了训练,用训练好的LSTM网络对6个国家的人均GDP进行了预测。通过对预测值和实际值的比较,结果显示LSTM网络对人均GDP的预测效果明显优于传统的统计学方法。 展开更多
关键词 人均GDP 深度学习 循环神经网络 长短期记忆网络
下载PDF
基于自注意力和门控循环神经网络的雷达回波外推算法研究
19
作者 薛丰昌 章超钦 +1 位作者 王文硕 陈笑娟 《气象学报》 CAS CSCD 北大核心 2024年第1期127-135,共9页
为提升现有神经网络对雷达回波序列的时、空特征提取能力,建立外推性能更优的时、空序列预测模型,开展雷达回波外推算法改进研究。基于深圳市气象局与中国香港天文台共同建立的雷达回波数据集,在数据处理层面,通过改进对雷达回波图像序... 为提升现有神经网络对雷达回波序列的时、空特征提取能力,建立外推性能更优的时、空序列预测模型,开展雷达回波外推算法改进研究。基于深圳市气象局与中国香港天文台共同建立的雷达回波数据集,在数据处理层面,通过改进对雷达回波图像序列归一化的方法,提升了常用的5种时、空序列预测模型对强回波的预测水平;在模型算法层面,将两个联立的自注意力结构引入ST-LSTM结构,组成新的循环门控单元,并将这些循环门控单元进行堆叠,建立ST-SARNN模型。选用CSI和POD作为精度评价指标,进行模型对比分析得到:(1)改进的归一化方法提升了近几年内常用的5种时、空序列预测模型对强回波的预测水平。(2)加入自注意力的ST-SARNN模型对雷达回波的预测性能显著优于ConvLSTM、PredRNN和MIM等模型。改进的归一化方法能改变样本数据分布,并在一定程度上提升模型外推性能;自注意力结构能够有效挖掘雷达回波序列的时、空特征,进而改进神经网络的外推表现。 展开更多
关键词 雷达回波外推 自注意力机制 循环神经网络 数据归一化方法
下载PDF
基于层级循环神经网络的多分区医疗影像智能推荐算法
20
作者 李晓宇 《绥化学院学报》 2024年第9期156-160,共5页
针对传统的医疗影像智能推荐算法未进行数据预处理和特征向量提取,导致推荐准确度低、加速比小的问题,提出基于层级循环神经网络的多分区医疗影像智能推荐算法。首先,计算得到Gini增益,获取多分区医疗影像;其次,采用等方性处理方法对医... 针对传统的医疗影像智能推荐算法未进行数据预处理和特征向量提取,导致推荐准确度低、加速比小的问题,提出基于层级循环神经网络的多分区医疗影像智能推荐算法。首先,计算得到Gini增益,获取多分区医疗影像;其次,采用等方性处理方法对医疗影像进行插值,采用高斯滤波方法滤除医疗影像中噪声,基于此去除干扰信息;最后,将去除干扰信息后医疗影像输入到层级循环神经网络模型中,训练模型中的个数、深度、内部节点的数量,确定梯度向量,获取推荐结果。 展开更多
关键词 层级循环神经网络 多分区 医疗影像 智能推荐算法
下载PDF
上一页 1 2 193 下一页 到第
使用帮助 返回顶部