期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于OHF Elman-AdaBoost算法的滚动轴承故障多时期诊断方法 被引量:4
1
作者 卓鹏程 夏唐斌 +2 位作者 郑美妹 郑宇 奚立峰 《振动与冲击》 EI CSCD 北大核心 2021年第6期71-78,共8页
针对随机噪声下滚动轴承多时期(初期、中期、晚期)故障诊断需求,提出OHF Elman-AdaBoost(output hidden feedback Elman-adaptive boosting)算法,以实现滚动轴承的精确故障诊断。采用集合经验模态分解(ensemble empirical mode decompos... 针对随机噪声下滚动轴承多时期(初期、中期、晚期)故障诊断需求,提出OHF Elman-AdaBoost(output hidden feedback Elman-adaptive boosting)算法,以实现滚动轴承的精确故障诊断。采用集合经验模态分解(ensemble empirical mode decomposition,EEMD)对原始信号进行分解、降噪、信号重构。设计OHF Elman方法在Elman神经网络的基础上增加输出层对隐含层的反馈,提高了其对动态数据的记忆功能。选择OHF Elman神经网络作为弱回归器,结合AdaBoost算法集成出一种新的强回归器:OHF Elman-AdaBoost算法。实验结果表明,该算法不仅对滚动轴承不同故障时期具有很好的诊断效果,而且提高了对全样本数据的诊断准确度,为滚动轴承故障诊断提供了新型工具和有效方案。 展开更多
关键词 滚动轴承 OHF elman-adaboost 神经网络 集合经验模态分解(EEMD) 故障多时期诊断
下载PDF
基于改进快速集合经验模态分解和Elman-Adaboost的短期风速预测方法 被引量:5
2
作者 王凯 毕贵红 +2 位作者 高晗 蒲娴怡 陈仕龙 《电力科学与工程》 2020年第5期32-39,共8页
针对风电场风速时序的不可控特性以及短期风速预测精度低的问题,提出基于改进快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)和Elman-Adaboost的组合预测模型。首先,采用加余弦函数改进FEEMD方法将风速数据... 针对风电场风速时序的不可控特性以及短期风速预测精度低的问题,提出基于改进快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)和Elman-Adaboost的组合预测模型。首先,采用加余弦函数改进FEEMD方法将风速数据分解为相对平稳的本征模态函数分量;然后,运用样本熵(sampleentropy,SE)计算分量复杂度并按复杂度对分量进行重构;最后,基于Elman-Adaboost方法的单步直接预测方法来预测重构后分量下一天24 h的风速值,将所有分量的预测叠加得到最终的预测结果。选择预测点时间前24、48和72 h风速数据作为神经网络的输入维数,比较不同维数对预测精度的影响。实验证明,改进FEEMD-SE-Elman-Adaboost组合预测模型可以有效地提高风电场短期预测的精度。 展开更多
关键词 快速集合经验模态分解 端点效应 余弦窗函数 elman-adaboost
下载PDF
基于EEMD-Elman-Adaboost的中美股票价格预测研究 被引量:3
3
作者 杨静凌 唐国强 张建文 《运筹与管理》 CSSCI CSCD 北大核心 2022年第11期194-199,共6页
针对股票价格序列高度非正态、非线性、非平稳等复杂特征,文章以Elman神经网络为基础,引入集合经验模态分解(EEMD)与Adaboost算法,对中美股票的日收盘价进行预测。首先,利用EEMD算法将样本分解为多个本征模函数分量和1个残差分量。其次,... 针对股票价格序列高度非正态、非线性、非平稳等复杂特征,文章以Elman神经网络为基础,引入集合经验模态分解(EEMD)与Adaboost算法,对中美股票的日收盘价进行预测。首先,利用EEMD算法将样本分解为多个本征模函数分量和1个残差分量。其次,用Adaboost算法优化Elman神经网络,对各个分量进行预测。最后,将各分量预测结果进行求和,作为最终预测结果。研究结果表明:EEMD-Elman-Adaboost模型对中美股票价格预测的均方根误差、平均相对误差、平均绝对误差均比现有的BP、Elman、EMD-Elman、EEMD-Elman模型小,新组合模型融合了EEMD、Elman神经网络、Adaboost算法的优点,具有更强的泛化能力和跟随能力。 展开更多
关键词 股票收盘价 EEMD ELMAN ADABOOST 组合模型预测
下载PDF
基于CEEMD-Elman-Adaboost组合模型的国际原油价格预测研究 被引量:7
4
作者 杨静凌 唐国强 张建文 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第3期260-267,共8页
针对国际原油价格序列的高度非线性、非平稳性和时变性等复杂特征,提出用互补集合经验模态分解(CEEMD)和Elman-Adaboost神经网络的组合模型对Brent原油价格序列进行预测。首先,利用CEEMD将Brent原油价格序列分解为10个IMF分量和1个残差... 针对国际原油价格序列的高度非线性、非平稳性和时变性等复杂特征,提出用互补集合经验模态分解(CEEMD)和Elman-Adaboost神经网络的组合模型对Brent原油价格序列进行预测。首先,利用CEEMD将Brent原油价格序列分解为10个IMF分量和1个残差分量;其次,将各分量序列以滑动窗口的形式训练数据,利用Adaboost算法优化的Elman神经网络对各个分量进行预测;最后,将各个分量的预测结果进行求和得到Brent原油价格序列的最终预测结果。实证结果表明:该方法对Brent原油价格序列预测的均方根误差、平均相对误差、平均绝对误差均比PSO-BP、CEEMD-PSO-BP、EEMD-Elman、CEEMD-Elman模型小,新组合模型是一种预测精度更高、更有效的预测方法。 展开更多
关键词 国际原油价格 CEEMD ELMAN ADABOOST 组合模型预测
下载PDF
基于Adaboost的改进Elman神经网络港口吞吐量预测方法 被引量:12
5
作者 李广儒 张新 朱庆辉 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期1-5,共5页
为提高港口吞吐量的预测精度,建立基于Adaboost算法改进的Elman神经网络预测模型,进行吞吐量的预测。首先对Elman神经网络进行多次训练和迭代,然后将每个Elman神经网络作为弱预测器,基于Adaboost算法将多个弱预测器加权组合,形成Elman-A... 为提高港口吞吐量的预测精度,建立基于Adaboost算法改进的Elman神经网络预测模型,进行吞吐量的预测。首先对Elman神经网络进行多次训练和迭代,然后将每个Elman神经网络作为弱预测器,基于Adaboost算法将多个弱预测器加权组合,形成Elman-Adaboost强预测器模型。经过Adaboost算法优化的强预测器对误差较大的数据样本有更强的识别能力,可以实现对数据的动态增强学习。以宁波-舟山港2011—2017年的港口吞吐量数据为样本进行仿真,分别使用BP神经网络、Elman神经网络、BP-Adaboost神经网络以及Elman-Adaboost神经网络进行预测,比较四种模型的预测精度。研究结果表明:Elman-Adaboost强预测器模型用于港口吞吐量的预测,预测结果的相对误差最大值1.91%,最小值0.06%,可以将预测误差控制在2%以下,数据拟合效果更好预测精度更高,可以作为港口吞吐量预测的一种方法。 展开更多
关键词 交通运输工程 港口吞吐量 ADABOOST算法 ELMAN神经网络 动态预测
下载PDF
基于集成神经网络的特高压直流输电线路初始电压行波小波变换模极大值比单端测距方法 被引量:11
6
作者 邢超 高敬业 +1 位作者 毕贵红 陈仕龙 《电力自动化设备》 EI CSCD 北大核心 2022年第11期128-134,共7页
针对现有故障测距方法存在对高阻故障不灵敏、二次行波波头难以捕捉的问题,提出一种基于集成神经网络的特高压直流输电线路初始电压行波小波变换模极大值比的单端测距方法。首先,推导出故障距离与初始电压行波的线模量和地模量的小波变... 针对现有故障测距方法存在对高阻故障不灵敏、二次行波波头难以捕捉的问题,提出一种基于集成神经网络的特高压直流输电线路初始电压行波小波变换模极大值比的单端测距方法。首先,推导出故障距离与初始电压行波的线模量和地模量的小波变换模极大值比之间的近似公式,公式表明两者之间具有非线性关系,且此关系与过渡电阻无关。然后,利用AdaBoost-Elman集成神经网络拟合两者之间的非线性关系,提取不同小波尺度下初始电压行波各模量分量的小波变换模极大值比作为集成神经网络输入量,将故障距离作为输出量,构建集成神经网络故障测距模型。将各小波尺度下的初始电压行波各模量分量的小波变换模极大值比输入训练完成的集成神经网络模型即可达到故障测距的目的。仿真结果表明,所提方法测距精度高,且不受过渡电阻影响。 展开更多
关键词 特高压直流 输电线路 初始电压行波 模极大值比 AdaBoost-Elman集成神经网络 故障测距
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部