1 Introduction Viruses are the most abundant biological entities on Earth.They can influence the succession of individual microbial populations,biogeochemical cycles of C/N and,ultimately,microbial community structure...1 Introduction Viruses are the most abundant biological entities on Earth.They can influence the succession of individual microbial populations,biogeochemical cycles of C/N and,ultimately,microbial community structure through killing展开更多
Elovl4 is a fatty acyl elongase which participates in the biosynthesis of long-chain polyunsaturated fatty acids(LCPUFA).Herein we isolated and functionally characterized the elovl4a gene in the large yellow croaker L...Elovl4 is a fatty acyl elongase which participates in the biosynthesis of long-chain polyunsaturated fatty acids(LCPUFA).Herein we isolated and functionally characterized the elovl4a gene in the large yellow croaker Larimichthys crocea,and investigated the regulatory effects of transcription factors Hnf4α,Lxrα,Pparαon the activity of elovl4a promoter.Tissue expression pattern revealed that elovl4a was widely expressed in several tissues and predominantly in brain.Heterologous expression in yeast showed that L.crocea Elovl4a could effectively elongate both C18 and C20 PUFA substrates to C22 fatty acid.In addition,the affinity of large yellow croaker Elovl4a to n-6 series fatty acids is weak and cannot prolong 18:2n-6 and 18:3n-6.Moreover,L.crocea elovl4a reporter activities were elevated by 1.31-,1.39-and 1.48-fold via over-expression of Lxrα,Pparαand Hnf4α,respectively.The above findings can enrich the knowledge of biosynthesis pathway of LC-PUFA in the large yellow croaker and contribute to elucidate the LC-PUFA anabolism mechanism in fish.展开更多
Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air duri...Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air during the low tide and produces large quantities of mucus as an external covering. The relation between low tide and mucus secretion is still unclear, and what is the role of mucin during arial exposure is not yet investigated. This study hypothesised that the mucin genes in A. veratra would have significantly high expression in response to aerial exposure. Therefore, the aim of current study was to examine and analyses the response of A. veratra mucins in response to an experiment involving three hours of aerial exposure. To achieve this, aim the RNA-sequencing and bioinformatics analyses were used to examine the expression profile of A. veratra mucin genes in response to aerial exposure. The generated results have shown that, Mucin4-like and mucin5B-like were up-regulated in response to the three hours of aerial exposure in A. veratra. This finding shows a significant role of mucin5B-like and mucin4-like genes in response to air stress at low tide. The data generated from this study could be used in conjunction with future mucin gene studies of sea anemones and other cnidarians to compare A. veratra mucin gene expression results across time, and to extend our understanding of mucin stress response in this phylum.展开更多
Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, e...Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, encodes OsSK41 (also known as OsGSK5), a member of the GLYCOGEN SYNTHASE KINASE 3/SHAGGY-like family. Rice near-isogenic lines carrying the loss-of-function allele of OsSK41 have increased grain length and weight. We demonstrate that OsSK41 interacts with and phosphorylates AUXIN RESPONSE FACTOR 4 (OsARF4). Co-expression of OsSK41 with OsARF4 increases the accumulation of OsARF4 in rice protoplasts. Loss of function of OsARF4 results in larger rice grains. RNA-sequencing analysis suggests that OsARF4 and OsSK41 repress the expression of a common set of downstream genes, including some auxin-responsive genes, during rice grain development. The loss-of-function form of OsSK41 at qTGW3 represents a rare allele that has not been extensively utilized in rice breeding. Suppression of OsSK41 function by either targeted gene editing or QTL pyramiding enhances rice grain size and weight. Thus, our study reveals the important role of OsSK41 in rice grain development and provides new candidate genes for genetic improvement of grain yield in rice and perhaps in other cereal crops.展开更多
Pathogenic Escherichia coli cause chicken colibacillosis, which is economically devastating to the poultry in- dustry worldwide (Bagheri et al., 2014). Owing to in- creasing antibiotic resistance, phage therapy reag...Pathogenic Escherichia coli cause chicken colibacillosis, which is economically devastating to the poultry in- dustry worldwide (Bagheri et al., 2014). Owing to in- creasing antibiotic resistance, phage therapy reagents have been developed to treat bacterial infections (Xu et al., 2015).展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41002123 & 41030211)the National Basic Research Program of China (Grant No. 2011CB808800)+1 种基金State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (No. GBL11201)the Fundamental Research Funds for National University, China University of Geosciences (Wuhan)
文摘1 Introduction Viruses are the most abundant biological entities on Earth.They can influence the succession of individual microbial populations,biogeochemical cycles of C/N and,ultimately,microbial community structure through killing
基金the Natural Science Foun-dation of Fujian Province(No.2018J01450)the National Natural Science Foundation of China(No.U1705231)+2 种基金the National Marine Fisheries Industrial Technology System Post Scientist Project(No.CARS-47-G04)the Scientific Research Foundation of Jimei University(No.ZQ2019046)the Central Public-Interest Scientific Institution Basal Re-search&Key Laboratory of Sustainable Development of Marine Fisheries,Ministry of Agriculture,P.R.China,CAFS(No.2017HY-XKQ01).
文摘Elovl4 is a fatty acyl elongase which participates in the biosynthesis of long-chain polyunsaturated fatty acids(LCPUFA).Herein we isolated and functionally characterized the elovl4a gene in the large yellow croaker Larimichthys crocea,and investigated the regulatory effects of transcription factors Hnf4α,Lxrα,Pparαon the activity of elovl4a promoter.Tissue expression pattern revealed that elovl4a was widely expressed in several tissues and predominantly in brain.Heterologous expression in yeast showed that L.crocea Elovl4a could effectively elongate both C18 and C20 PUFA substrates to C22 fatty acid.In addition,the affinity of large yellow croaker Elovl4a to n-6 series fatty acids is weak and cannot prolong 18:2n-6 and 18:3n-6.Moreover,L.crocea elovl4a reporter activities were elevated by 1.31-,1.39-and 1.48-fold via over-expression of Lxrα,Pparαand Hnf4α,respectively.The above findings can enrich the knowledge of biosynthesis pathway of LC-PUFA in the large yellow croaker and contribute to elucidate the LC-PUFA anabolism mechanism in fish.
文摘Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air during the low tide and produces large quantities of mucus as an external covering. The relation between low tide and mucus secretion is still unclear, and what is the role of mucin during arial exposure is not yet investigated. This study hypothesised that the mucin genes in A. veratra would have significantly high expression in response to aerial exposure. Therefore, the aim of current study was to examine and analyses the response of A. veratra mucins in response to an experiment involving three hours of aerial exposure. To achieve this, aim the RNA-sequencing and bioinformatics analyses were used to examine the expression profile of A. veratra mucin genes in response to aerial exposure. The generated results have shown that, Mucin4-like and mucin5B-like were up-regulated in response to the three hours of aerial exposure in A. veratra. This finding shows a significant role of mucin5B-like and mucin4-like genes in response to air stress at low tide. The data generated from this study could be used in conjunction with future mucin gene studies of sea anemones and other cnidarians to compare A. veratra mucin gene expression results across time, and to extend our understanding of mucin stress response in this phylum.
基金This work was financially supported by grants from the National Key Research and Development Program of China (2016YFD0100902), the National Natural Science Foundation of China (numbers 31400223, 31471461, and 31625004), the Basic Research Program from the Shanghai Municipal Science and Technology Commission (14JC1400800), the Basic Application Research Program from the Shanghai Municipal Agriculture Commission (2014-7-1-2), and the Agricultural Seed Project of Shandong Province.
文摘Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, encodes OsSK41 (also known as OsGSK5), a member of the GLYCOGEN SYNTHASE KINASE 3/SHAGGY-like family. Rice near-isogenic lines carrying the loss-of-function allele of OsSK41 have increased grain length and weight. We demonstrate that OsSK41 interacts with and phosphorylates AUXIN RESPONSE FACTOR 4 (OsARF4). Co-expression of OsSK41 with OsARF4 increases the accumulation of OsARF4 in rice protoplasts. Loss of function of OsARF4 results in larger rice grains. RNA-sequencing analysis suggests that OsARF4 and OsSK41 repress the expression of a common set of downstream genes, including some auxin-responsive genes, during rice grain development. The loss-of-function form of OsSK41 at qTGW3 represents a rare allele that has not been extensively utilized in rice breeding. Suppression of OsSK41 function by either targeted gene editing or QTL pyramiding enhances rice grain size and weight. Thus, our study reveals the important role of OsSK41 in rice grain development and provides new candidate genes for genetic improvement of grain yield in rice and perhaps in other cereal crops.
基金supported by grants from the Nature Science Foundation of Shandong Province of China (grant nos.ZR2013CQ024 and ZR2015CM020)
文摘Pathogenic Escherichia coli cause chicken colibacillosis, which is economically devastating to the poultry in- dustry worldwide (Bagheri et al., 2014). Owing to in- creasing antibiotic resistance, phage therapy reagents have been developed to treat bacterial infections (Xu et al., 2015).