期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Considering explosive charge shape and embedded depth in the design of concrete shelter thickness
1
作者 Yi Fan Li Chen +3 位作者 Jian Hong Runqing Yu Hengbo Xiang Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期44-57,共14页
Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation ... Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures. 展开更多
关键词 Blast resistance Charge shape Embedded depth Structural design
下载PDF
Depth factors for undrained bearing capacity of circular footing by numerical approach 被引量:2
2
作者 Sadok Benmebarek Insaf Saifi Naima Benmebarek 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期761-766,共6页
The undrained vertical bearing capacity of embedded foundation has been extensively studied using analytical and numerical methods.Through comparing the results of a circular embedded foundation in the literature,a si... The undrained vertical bearing capacity of embedded foundation has been extensively studied using analytical and numerical methods.Through comparing the results of a circular embedded foundation in the literature,a significant difference between the bearing capacity factors and depth factors is observed.Based on the previous research findings,numerical computations using FLAC code are carried out in this study to evaluate the undrained bearing capacity of circular foundations with embedment ratios up to five for different base and side foundation roughness conditions.Unlike the foundation base,the roughness of the foundation side has a significant effect on the bearing capacity.The comparison of the present results with numerical studies available in the literature shows that the discrepancy is related to the procedures used to simulate the foundation side interface conditions and to the estimation of the bearing capacity. 展开更多
关键词 Circular footing Bearing capacity embedment depth Numerical modeling PLASTICITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部