AIM: To investigate a dual labeling technique, which would enable real-time monitoring of transplanted em- bryonic stem cell (ESC) kinetics, as well as long-term tracking. METHODS: Liver damage was induced in C57/...AIM: To investigate a dual labeling technique, which would enable real-time monitoring of transplanted em- bryonic stem cell (ESC) kinetics, as well as long-term tracking. METHODS: Liver damage was induced in C57/BL6 male mice (n = 40) by acetaminophen (APAP) 300 mg/kg administered intraperitoneally. Green fluores- cence protein (GFP) positive C57/BL6 mouse ESCs were stained with the near-infrared fluorescent lipophilic tracer 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbo- cyanine iodide (DiR) immediately before transplantationinto the spleen. Each of the animals in the cell therapy group (n = 20) received 5 x 106 ESCs 4 h following treatment with APAP. The control group (n = 20) re- ceived the vehicle only. The distribution and dynamics of the cells were monitored in real-time with the IVIS lumina-2 at 30 rain post transplantation, then at 3, 12, 24, 48 and 72 h, and after one and 2 wk. Immunohisto- chemical examination of liver tissue was used to identify expression of GFP and albumin. Plasma alanine amino- transferase (ALT) was measured as an indication of liver damage.RESULTS: DiR-stained ESCs were easily tracked with the IVIS using the indocyanine green filter due to its high background passband with minimal background autofluorescence. The transplanted cells were confined inside the spleen at 30 min post-transplantation, gradu- ally moved into the splenic vein, and were detectable in parts of the liver at the 3 h time-point. Within 24 h of transplantation, homing of almost 90% of cells was confirmed in the liver. On day three, however, the DiR signal started to fade out, and ex vivo IVIS imaging of different organs allowed signal detection at time-points when the signal could not be detected by in vivo imag- ing, and confirmed that the highest photon emission was in the liver (P 〈 0.0001). At 2 wk, the DiRsignal was no longer detectable in vivo; however, immuno- histochemistry analysis of constitutively-expressed GFP was used to provide an insight into the distribution of the cells. GFP +ve cells were detected in tissue sections resembling hepatocytes and were dispersed throughout the hepatic parenchyma, with the presence of a larger number of GFP +ve cells incorporated within the sinu- soidal endothelial lining. Very faint albumin expression was detected in the transplanted GFP +re cells at 72 h; however at 2 wk, few cells that were positive for GFP were also strongly positive for albumin. There was a significant improvement in serum levels of ALT, albumin and bilirubin in both groups at 2 wk when compared with the 72 h time-point. In the cell therapy group, serum ALT was significantly (P = 0.016) lower and al- bumin (P = 0.009) was significantly higher when com- pared with the control group at the 2 wk time-point;however there was no difference in mortality between the two groups. CONCLUSION: Dual labeling is an easy to use and cheap method for longitudinal monitoring of distribu- tion, survival and engraftment of transplanted cells, and could be used for cell therapy models.展开更多
基金Supported by Citadel Capital Scholarship Foundation,EgyptDr. Leslie Borthwick/Ms. Anita Holme,Charitable Research Fund East and North Herts NHS TrusHertfordshire,United Kingdom
文摘AIM: To investigate a dual labeling technique, which would enable real-time monitoring of transplanted em- bryonic stem cell (ESC) kinetics, as well as long-term tracking. METHODS: Liver damage was induced in C57/BL6 male mice (n = 40) by acetaminophen (APAP) 300 mg/kg administered intraperitoneally. Green fluores- cence protein (GFP) positive C57/BL6 mouse ESCs were stained with the near-infrared fluorescent lipophilic tracer 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbo- cyanine iodide (DiR) immediately before transplantationinto the spleen. Each of the animals in the cell therapy group (n = 20) received 5 x 106 ESCs 4 h following treatment with APAP. The control group (n = 20) re- ceived the vehicle only. The distribution and dynamics of the cells were monitored in real-time with the IVIS lumina-2 at 30 rain post transplantation, then at 3, 12, 24, 48 and 72 h, and after one and 2 wk. Immunohisto- chemical examination of liver tissue was used to identify expression of GFP and albumin. Plasma alanine amino- transferase (ALT) was measured as an indication of liver damage.RESULTS: DiR-stained ESCs were easily tracked with the IVIS using the indocyanine green filter due to its high background passband with minimal background autofluorescence. The transplanted cells were confined inside the spleen at 30 min post-transplantation, gradu- ally moved into the splenic vein, and were detectable in parts of the liver at the 3 h time-point. Within 24 h of transplantation, homing of almost 90% of cells was confirmed in the liver. On day three, however, the DiR signal started to fade out, and ex vivo IVIS imaging of different organs allowed signal detection at time-points when the signal could not be detected by in vivo imag- ing, and confirmed that the highest photon emission was in the liver (P 〈 0.0001). At 2 wk, the DiRsignal was no longer detectable in vivo; however, immuno- histochemistry analysis of constitutively-expressed GFP was used to provide an insight into the distribution of the cells. GFP +ve cells were detected in tissue sections resembling hepatocytes and were dispersed throughout the hepatic parenchyma, with the presence of a larger number of GFP +ve cells incorporated within the sinu- soidal endothelial lining. Very faint albumin expression was detected in the transplanted GFP +re cells at 72 h; however at 2 wk, few cells that were positive for GFP were also strongly positive for albumin. There was a significant improvement in serum levels of ALT, albumin and bilirubin in both groups at 2 wk when compared with the 72 h time-point. In the cell therapy group, serum ALT was significantly (P = 0.016) lower and al- bumin (P = 0.009) was significantly higher when com- pared with the control group at the 2 wk time-point;however there was no difference in mortality between the two groups. CONCLUSION: Dual labeling is an easy to use and cheap method for longitudinal monitoring of distribu- tion, survival and engraftment of transplanted cells, and could be used for cell therapy models.