The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibro...The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen- tiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro- scope. Immunofluorescence staining revealed expression levels of Nestin, [3-111 Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in- creases the differentiation of neural precursors.展开更多
Spermatogonial stem cells (SSCs) divide continuously to support spermatogenesis throughout postnatal life and transmit genetic information to the next generation. Here, we report the successful establishment of the ...Spermatogonial stem cells (SSCs) divide continuously to support spermatogenesis throughout postnatal life and transmit genetic information to the next generation. Here, we report the successful establishment of the method for the isolation and identification of human SSCs from testicular tissue, and to determine the culture conditions required to expand SSCs on human embryonic stem cell-derived fibroblast-like cells (hdFs). Large-scale cultures of SSCs were maintained on hdF feeder layers and expanded in the presence of a combination of cytokines and glial cell line-derived neurotrophic factor for at least 2 months. Cell surface marker analysis showed that SSCs retained high levels of alkaline phosphatase activity and stained strongly for anti-stage-specific embryonic antigen (SSEA)-1, OCT4 and CD49f. They also expressed the genes OCT4, SOX3 and STRA8 as detected by reverse transcription polymerase chain reaction (RT-PCR) analysis. These data clearly illustrate a novel approach for the growth of human SSCs using hdFs as feeder cells, potentially eliminating xenogeneic contaminants. This system provides a new opportunity for the study of the regulatory mechanism of the ‘niche' that governs SSC self-renewal, and will be a valuable source of SSCs for potential clinical applications.展开更多
Objective:To exploretheserum-freecultureconditionsfordifferentiatingmouseembryonicstemcells(ES cells)intoneuralprecursorcells(NPC)andcomparetheeffectsof humanembryonicfibroblasts(HEF)as thefeederlayer of ES withthatof...Objective:To exploretheserum-freecultureconditionsfordifferentiatingmouseembryonicstemcells(ES cells)intoneuralprecursorcells(NPC)andcomparetheeffectsof humanembryonicfibroblasts(HEF)as thefeederlayer of ES withthatof mouseembryonicfibroblasts(MEF)in vitro.Methods:MouseES cellswereculturedin or notin feederlayer cellsmediumcontainingor notleukemiainhibitoryfactorto suppresstheirdifferentiation.Immunocytochemicalmethod was usedto identifyNPCby detectingnestinantigenandalkalinephosphatase.Results: TheES cellsculturedin HEF werepositiveto alkalinephosphatase.Serum-freemediumallowedthedifferentiationof ES cellsintoNPC.Conclusion:HEFcouldreplaceMEFandkeeptheundifferentiatedconditionof ES cellswithmorebenefits.NPCof highpuritycould be culturedfromEScellsby serum-freeculturemethod.展开更多
Human pluripotent stem cells (hPSC) differentiated to retinal pigment epithelial cells (RPE) provide a promising tool for cell replacement therapies of retinal degenerative diseases. The in vitro differentiation of hP...Human pluripotent stem cells (hPSC) differentiated to retinal pigment epithelial cells (RPE) provide a promising tool for cell replacement therapies of retinal degenerative diseases. The in vitro differentiation of hPSC-RPE is still poorly understood and current differentiation protocols rely on spontaneous differentiation on fibroblast feeder cells or as floating cell aggregates in suspension. The fibroblast feeder cells may have an inductive effect on the hPSC-RPE differentiation, providing variable signals mimicking the extraocular mesenchyme that directs the differentiation in vivo. The effect of the commonly used fibroblast feeder cells on the hPSCRPE differentiation was studied by comparing suspension differentiation in standard RPEbasic (no bFGF) medium to RPEbasic medium conditioned with mouse embryonic (mEF-CM) and human foreskin (hFF-CM) fibroblast feeder cells. The fibroblast secreted factors were found to enhance early hPSC-RPE differentiation. The onset of pigmentation was faster in the conditioned media (CM) compared to RPEbasic for both human embryonic (hESC) and induced pluripotent (iPSC) stem cells, with the first pigments appearing around two weeks of differentiation. After four weeks of differentiation, CM conditions consistently contained higher number of pigmented cell aggregates. The ratio of PAX6 and MITF positive cells was quantified to be clearly higher in the CM conditions, with mEFCM containing most positive cells. The mEF cells were found to secrete low levels of activin A growth factor that is known to regulate eye field differentiation. As RPEbasic was supplemented with corresponding, low level (10 ng/ml) of recombinant human activin A, a clear increase in the hPSC-RPE differentiation was achieved. Thus, inductive effect provided by feeder cells was at least partially driven by activin A and could be substituted with a low level of recombinant growth factor in contrasts to previously reported much higher concentrations.展开更多
Hepatocyte transplantation is an alternative to liver transplantation in certain disorders such as inheritedliver diseases and liver failure.It is a relatively less complicated surgical procedure,and has the advantage...Hepatocyte transplantation is an alternative to liver transplantation in certain disorders such as inheritedliver diseases and liver failure.It is a relatively less complicated surgical procedure,and has the advantage that it can be repeated several times if unsuccessful.Another advantage is that hepatocytes can be isolated from partly damaged livers which are not suitable for liver transplantation.Despite these advantages hepatocyte transplantation is less popular.Important issues are poor engraftment of the transplanted cells and the scarcity of donor hepatocytes.Generation of "hepatocyte like cells"/i Heps from embryonic stem cells(ES) and induced pluripotent stem cells(iP SCs) by directed differentiation is an emerging solution to the latter issue.Direct conversation or trans-differentiation of fibroblasts to "hepatocyte like cells" is another way which is,being explored.However this method has several inherent and technical disadvantages compared to the directed differentiation from ES or i PSC.There are several methods claiming to be "highly efficient" for generating "highly functional" "hepatocyte like cells".Currently different groups are working independently and coming up with differentiation protocols and each group claiming an advantage for their protocol.Directed differentiation protocols need to be designed,compared,analyzed and tweaked systematically and logically than empirically.There is a need for a wellcoordinated global initiative comparable to the Human Genome Project to achieve this goal in the near future.展开更多
To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblasts with human fibroblasts as the feeder layer to maintain human embry...To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblasts with human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We success-fully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.展开更多
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both va...Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both vascular and glial cells secrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), we assessed the effect of VEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonic stem cells. VEGF alone did not have any significant effect. When bFGF was added, however, VEGF stimulated NSC proliferation in a dose-dependent manner, and this stimulation was inhibited by ZM323881, a VEGF receptor (Flk-1)- specific inhibitor. Interestingly, ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF, suggesting that VEGF autocrine plays a role in the proliferation of NSCs. The stimulatory effect of VEGF on NSC proliferation depends on bFGF, which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphorylation of ERK1/2. Collectively, this study may provide insight into the mechanisms by which microenvironmental niche signals regulate NSCs.展开更多
The nucleus of a somatic cell could be dedif-ferentiated and reprogrammed in an enucleated heterogeneous oocyte. Some reconstructed oocytes could develop into blastocysts in vitro, and a few could develop into term no...The nucleus of a somatic cell could be dedif-ferentiated and reprogrammed in an enucleated heterogeneous oocyte. Some reconstructed oocytes could develop into blastocysts in vitro, and a few could develop into term normally after transferred into foster mothers, but most of cloning embryos fail to develop to term. In order to evaluate the efficacy of embryonic stem cell as nucleus donor in interspecific animal cloning, we reconstructed enucleated rabbit oocytes with nuclei from mouse ES cells, and analyzed the developmental ability of reconstructed embryos in vitro. Two kinds of fibroblast cells were used as donor control, one derived from ear skin of an adult Kunming albino mouse, and the other derived from a mouse fetus. Three types of cells were transferred into perivitelline space under zona pellu-cida of rabbit oocytes respectively. The reconstructed oocytes were fused and activated by electric pulses, and cultured in vitro. The developmental rate of reconstructed oocytes derived from embryonic展开更多
基金sponsored by Shanghai Key Projects of Basic Research,No.08JC1413900
文摘The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen- tiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro- scope. Immunofluorescence staining revealed expression levels of Nestin, [3-111 Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in- creases the differentiation of neural precursors.
文摘Spermatogonial stem cells (SSCs) divide continuously to support spermatogenesis throughout postnatal life and transmit genetic information to the next generation. Here, we report the successful establishment of the method for the isolation and identification of human SSCs from testicular tissue, and to determine the culture conditions required to expand SSCs on human embryonic stem cell-derived fibroblast-like cells (hdFs). Large-scale cultures of SSCs were maintained on hdF feeder layers and expanded in the presence of a combination of cytokines and glial cell line-derived neurotrophic factor for at least 2 months. Cell surface marker analysis showed that SSCs retained high levels of alkaline phosphatase activity and stained strongly for anti-stage-specific embryonic antigen (SSEA)-1, OCT4 and CD49f. They also expressed the genes OCT4, SOX3 and STRA8 as detected by reverse transcription polymerase chain reaction (RT-PCR) analysis. These data clearly illustrate a novel approach for the growth of human SSCs using hdFs as feeder cells, potentially eliminating xenogeneic contaminants. This system provides a new opportunity for the study of the regulatory mechanism of the ‘niche' that governs SSC self-renewal, and will be a valuable source of SSCs for potential clinical applications.
文摘Objective:To exploretheserum-freecultureconditionsfordifferentiatingmouseembryonicstemcells(ES cells)intoneuralprecursorcells(NPC)andcomparetheeffectsof humanembryonicfibroblasts(HEF)as thefeederlayer of ES withthatof mouseembryonicfibroblasts(MEF)in vitro.Methods:MouseES cellswereculturedin or notin feederlayer cellsmediumcontainingor notleukemiainhibitoryfactorto suppresstheirdifferentiation.Immunocytochemicalmethod was usedto identifyNPCby detectingnestinantigenandalkalinephosphatase.Results: TheES cellsculturedin HEF werepositiveto alkalinephosphatase.Serum-freemediumallowedthedifferentiationof ES cellsintoNPC.Conclusion:HEFcouldreplaceMEFandkeeptheundifferentiatedconditionof ES cellswithmorebenefits.NPCof highpuritycould be culturedfromEScellsby serum-freeculturemethod.
文摘Human pluripotent stem cells (hPSC) differentiated to retinal pigment epithelial cells (RPE) provide a promising tool for cell replacement therapies of retinal degenerative diseases. The in vitro differentiation of hPSC-RPE is still poorly understood and current differentiation protocols rely on spontaneous differentiation on fibroblast feeder cells or as floating cell aggregates in suspension. The fibroblast feeder cells may have an inductive effect on the hPSC-RPE differentiation, providing variable signals mimicking the extraocular mesenchyme that directs the differentiation in vivo. The effect of the commonly used fibroblast feeder cells on the hPSCRPE differentiation was studied by comparing suspension differentiation in standard RPEbasic (no bFGF) medium to RPEbasic medium conditioned with mouse embryonic (mEF-CM) and human foreskin (hFF-CM) fibroblast feeder cells. The fibroblast secreted factors were found to enhance early hPSC-RPE differentiation. The onset of pigmentation was faster in the conditioned media (CM) compared to RPEbasic for both human embryonic (hESC) and induced pluripotent (iPSC) stem cells, with the first pigments appearing around two weeks of differentiation. After four weeks of differentiation, CM conditions consistently contained higher number of pigmented cell aggregates. The ratio of PAX6 and MITF positive cells was quantified to be clearly higher in the CM conditions, with mEFCM containing most positive cells. The mEF cells were found to secrete low levels of activin A growth factor that is known to regulate eye field differentiation. As RPEbasic was supplemented with corresponding, low level (10 ng/ml) of recombinant human activin A, a clear increase in the hPSC-RPE differentiation was achieved. Thus, inductive effect provided by feeder cells was at least partially driven by activin A and could be substituted with a low level of recombinant growth factor in contrasts to previously reported much higher concentrations.
基金Supported by IIP fellowship(2013-2014)Albert Einstein College of Medicine,New York,through the generosity of the Gruss Lipper Family Foundation
文摘Hepatocyte transplantation is an alternative to liver transplantation in certain disorders such as inheritedliver diseases and liver failure.It is a relatively less complicated surgical procedure,and has the advantage that it can be repeated several times if unsuccessful.Another advantage is that hepatocytes can be isolated from partly damaged livers which are not suitable for liver transplantation.Despite these advantages hepatocyte transplantation is less popular.Important issues are poor engraftment of the transplanted cells and the scarcity of donor hepatocytes.Generation of "hepatocyte like cells"/i Heps from embryonic stem cells(ES) and induced pluripotent stem cells(iP SCs) by directed differentiation is an emerging solution to the latter issue.Direct conversation or trans-differentiation of fibroblasts to "hepatocyte like cells" is another way which is,being explored.However this method has several inherent and technical disadvantages compared to the directed differentiation from ES or i PSC.There are several methods claiming to be "highly efficient" for generating "highly functional" "hepatocyte like cells".Currently different groups are working independently and coming up with differentiation protocols and each group claiming an advantage for their protocol.Directed differentiation protocols need to be designed,compared,analyzed and tweaked systematically and logically than empirically.There is a need for a wellcoordinated global initiative comparable to the Human Genome Project to achieve this goal in the near future.
基金supported by the National Natural Science Foundation of China(Grant Nos.30030070 and 3010403048)the National Major Basic Research Project(Grant No.001CB51010)+1 种基金the Natural Science Fund of Hunan Province(Grant No.00JJY2036)the Science and Technology Conquest of Hunan Province(Grant No.01SSY1001).
文摘To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblasts with human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We success-fully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.
文摘Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both vascular and glial cells secrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), we assessed the effect of VEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonic stem cells. VEGF alone did not have any significant effect. When bFGF was added, however, VEGF stimulated NSC proliferation in a dose-dependent manner, and this stimulation was inhibited by ZM323881, a VEGF receptor (Flk-1)- specific inhibitor. Interestingly, ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF, suggesting that VEGF autocrine plays a role in the proliferation of NSCs. The stimulatory effect of VEGF on NSC proliferation depends on bFGF, which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphorylation of ERK1/2. Collectively, this study may provide insight into the mechanisms by which microenvironmental niche signals regulate NSCs.
基金This work was supported by the fund of Climbing Program of the Ministry of Science and Technology (Grant No. 95-specific-08) and the Chinese Academy of Sciences (Grant No. KSCX1-05-01).
文摘The nucleus of a somatic cell could be dedif-ferentiated and reprogrammed in an enucleated heterogeneous oocyte. Some reconstructed oocytes could develop into blastocysts in vitro, and a few could develop into term normally after transferred into foster mothers, but most of cloning embryos fail to develop to term. In order to evaluate the efficacy of embryonic stem cell as nucleus donor in interspecific animal cloning, we reconstructed enucleated rabbit oocytes with nuclei from mouse ES cells, and analyzed the developmental ability of reconstructed embryos in vitro. Two kinds of fibroblast cells were used as donor control, one derived from ear skin of an adult Kunming albino mouse, and the other derived from a mouse fetus. Three types of cells were transferred into perivitelline space under zona pellu-cida of rabbit oocytes respectively. The reconstructed oocytes were fused and activated by electric pulses, and cultured in vitro. The developmental rate of reconstructed oocytes derived from embryonic