Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of...Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.展开更多
A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interaction...A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.展开更多
Determining the optimal vehicle routing of emergency material distribution(VREMD)is one of the core issues of emergency management,which is strategically important to improve the effectiveness of emergency response an...Determining the optimal vehicle routing of emergency material distribution(VREMD)is one of the core issues of emergency management,which is strategically important to improve the effectiveness of emergency response and thus reduce the negative impact of large-scale emergency events.To summarize the latest research progress,we collected 511VREMD-related articles published from 2010 to the present from the Scopus database and conducted a bibliometric analysis using VOSviewer software.Subsequently,we cautiously selected 49 articles from these publications for system review;sorted out the latest research progress in model construction and solution algorithms;and summarized the evolution trend of keywords,research gaps,and future works.The results show that domestic scholars and research organizations held an unqualified advantage regarding the number of published papers.However,these organizations with the most publications performed poorly regarding the number of literature citations.China and the US have contributed the vast majority of the literature,and there are close collaborations between researchers from both countries.The optimization model of VREMD can be divided into single-,multi-,and joint-objective models.The shortest travel time is the most common optimization objective in the single-objective optimization model.Several scholars focus on multiobjective optimization models to consider conflicting objectives simultaneously.In recent literature,scholars have focused on the impact of uncertainty and special events(e.g.,COVID-19)on VREMD.Moreover,some scholars focus on joint optimization models to optimize vehicle routes and central locations(or material allocation)simultaneously.Solution algorithms can be divided into two primary categories,i.e.,mathematical planning methods and intelligent evolutionary algorithms.The branch and bound algorithm is the most dominant mathematical planning algorithm,while genetic algorithms and their enhancements are the most commonly used intelligent evolutionary algorithms.It is shown that the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ)can effectively solve the multiobjective model of VREMD.To further improve the algorithm’s performance,researchers have proposed improved hybrid intelligent algorithms that combine the advantages of NSGA-Ⅱand certain other algorithms.Scholars have also proposed a series of optimization algorithms for specific scenarios.With the development of new technologies and computation methods,it will be exciting to construct optimization models that consider uncertainty,heterogeneity,and temporality for large-scale real-world issues and develop generalized solution approaches rather than those applicable to specific scenarios.展开更多
基金Project(2016YFC0802904)supported by the National Key Research and Development Program of China
文摘Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.
基金Projects(51605315,51478399)supported by the National Natural Science Foundation of ChinaProject(2013BAG20B00)supported by the National Key Technology R&D Program of ChinaProject(TPL1707)supported by the Open Project Program of the State Key Laboratory of Traction Power,China
文摘A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.
基金the National Natural Science Foundation of China(51808187,52062027)the Fundamental Research Funds for the Central Universities(B210202035)+2 种基金the"Double-First Class"Major Research Programs,Educational Department of Gansu Province(GSSYLXM-04)the Soft Science Special Project of Gansu Basic Research PIan(22JR4ZA035)the Gansu Provincial Science and Technology Major Special Project-Enterprise Innovation Consortium Project(22ZD6GA010)。
文摘Determining the optimal vehicle routing of emergency material distribution(VREMD)is one of the core issues of emergency management,which is strategically important to improve the effectiveness of emergency response and thus reduce the negative impact of large-scale emergency events.To summarize the latest research progress,we collected 511VREMD-related articles published from 2010 to the present from the Scopus database and conducted a bibliometric analysis using VOSviewer software.Subsequently,we cautiously selected 49 articles from these publications for system review;sorted out the latest research progress in model construction and solution algorithms;and summarized the evolution trend of keywords,research gaps,and future works.The results show that domestic scholars and research organizations held an unqualified advantage regarding the number of published papers.However,these organizations with the most publications performed poorly regarding the number of literature citations.China and the US have contributed the vast majority of the literature,and there are close collaborations between researchers from both countries.The optimization model of VREMD can be divided into single-,multi-,and joint-objective models.The shortest travel time is the most common optimization objective in the single-objective optimization model.Several scholars focus on multiobjective optimization models to consider conflicting objectives simultaneously.In recent literature,scholars have focused on the impact of uncertainty and special events(e.g.,COVID-19)on VREMD.Moreover,some scholars focus on joint optimization models to optimize vehicle routes and central locations(or material allocation)simultaneously.Solution algorithms can be divided into two primary categories,i.e.,mathematical planning methods and intelligent evolutionary algorithms.The branch and bound algorithm is the most dominant mathematical planning algorithm,while genetic algorithms and their enhancements are the most commonly used intelligent evolutionary algorithms.It is shown that the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ)can effectively solve the multiobjective model of VREMD.To further improve the algorithm’s performance,researchers have proposed improved hybrid intelligent algorithms that combine the advantages of NSGA-Ⅱand certain other algorithms.Scholars have also proposed a series of optimization algorithms for specific scenarios.With the development of new technologies and computation methods,it will be exciting to construct optimization models that consider uncertainty,heterogeneity,and temporality for large-scale real-world issues and develop generalized solution approaches rather than those applicable to specific scenarios.