This study presents an analysis of the spectral characteristics of remote sensing reflectance(Rrs)in northwestern South China Sea based on the in situ optical and water quality data for August 2018.Rrswas initially di...This study presents an analysis of the spectral characteristics of remote sensing reflectance(Rrs)in northwestern South China Sea based on the in situ optical and water quality data for August 2018.Rrswas initially divided into four classes,classes A to D,using the max-classification algorithm,and the spectral properties of whole Rrs were characterized using the empirical orthogonal function(EOF)analysis.Subsequently,the dominant factors in each EOF mode were determined.The results indicated that more than 95%of the variances of Rrs are partly driven by the back-scattering characteristics of the suspended matter.The initial two EOF modes were well correlated with the total suspended matter and back-scattering coefficient.Furthermore,the first EOF modes of the four classes of Rrs(A-D Rrs-EOF1)significantly contributed to the total variances of each Rrs class.In addition,the correlation coefficients between the amplitude factors of class A-D Rrs-EOF1 and the variances of the relevant water quality and optical parameters were better than those of the unclassified ones.The spectral shape of class ARrs-EOF1 was governed by the absorption characteristic of chlorophyll a and colored dissolved organic matter(CDOM).The spectral shape of class B Rrs-EOF1 was governed by the absorption characteristic of CDOM since it exhibited a high correlation with the absorption coefficient of CDOM(ag(λ)),whereas the spectral shape of class C Rrs-EOF1 was governed by the back-scattering characteristics but not affected by the suspended matter.The spectral shape of class D Rrs-EOF1 exhibited a relatively good correlation with all the water quality parameters,which played a significant role in deciding its spectral shape.展开更多
Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20...Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).展开更多
Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional ch...Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level.展开更多
The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 statio...The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 stations covering 1961–1999 on the plateau is analyzed by rotated experience orthogonal function (REOF). The results show that there are four main frozen anomaly regions on the plateau, i.e., the northeastern, southeastern and southern parts of the plateau and Qaidam Basin. The freezing soil depths of the annual anomaly regions in the above representative stations show that there are different changing trends. The main trend, except for the Qaidam Basin, has been decreasing since the 1980s, a sign of the climate warming. Compared with the 1980s, on the average, the maximum soil depth decreased by about 0.02 m, 0.05 m and 0.14 m in the northeastern, southeastern and southern parts of the plateau, but increased by about 0.57 m in the Qaidam Basin during the 1990s. It means there are different responses to climate system in the above areas. The spectrum analysis reveals different change cycles: in higher frequency there is an about 2-year long cycle in Qaidam Basin and southern part of the plateau in the four representative areas whereas in lower frequency there is an about 14-year long cycle in all the four representative areas due to the combined influence of different soil textures and solutes in four areas.展开更多
Empirical orthogonal function(EOF)analysis was applied to a 50-year long time series of monthly mean positions of the Kuroshio path south of Japan from a regional reanalysis.Three leading EOF modes characterize the co...Empirical orthogonal function(EOF)analysis was applied to a 50-year long time series of monthly mean positions of the Kuroshio path south of Japan from a regional reanalysis.Three leading EOF modes characterize the contributions from three typical paths of the Kuroshio meander:the typical large meander path,the offshore nonlarge meander path,and the nearshore non-large meander path,respectively.Accordingly,the spatial variation characteristics of oceanic anomaly fields can be depicted by their regression fields upon the associated three leading principal components(PCs),which are well-matched with the results of composite analysis corresponding to each period of the three typical Kuroshio paths.A new index for the typical large meander is defined by using the second leading PC,which is highly correlated with the Kushimoto-Uragami index.Spectral analysis of this new index series shows variability of the Kuroshio path south of Japan at time scales of about 7–8 years and 20 years.展开更多
Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have bee...Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.展开更多
Impacts of the Three Gorges Dam(TGD) in China on the regional pattern and annual amount of precipitation around the Three Gorges Reservoir(TGR) are examined by comparing observations before and after the operation...Impacts of the Three Gorges Dam(TGD) in China on the regional pattern and annual amount of precipitation around the Three Gorges Reservoir(TGR) are examined by comparing observations before and after the operation of TGD(1984–2003 and 2004–13). Empirical orthogonal function(EOF) analysis of the annual precipitation anomalies clearly indicates that the land-use change associated with the construction of TGD has not significantly changed the precipitation pattern. To investigate the impacts of TGD on the rainfall amount, we compare the relative variations of atmospheric variables related to precipitation formation in three spatial bands: over TGR, near TGR, and far from TGR. It is found that the differences in annual rainfall over TGD between the two periods before and after the operation of TGD are small, suggesting a weak impact of TGD on the rainfall amount. The TGD water level increased from 66 m before June 2003 to 175 m after 2010, and this may have slightly reduced precipitation on the local scale.展开更多
Based on daily ECMWF gridpoint data of two winters during 1981—1983 including an ENSO year,propagation of low frequency oscillations(LFO)during Northern Hemisphere winters and their influences upon 30—60 day oscilla...Based on daily ECMWF gridpoint data of two winters during 1981—1983 including an ENSO year,propagation of low frequency oscillations(LFO)during Northern Hemisphere winters and their influences upon 30—60 day oscillations of the subtropical jet stream are studied with the sta- tistical methods as complex empirical orthogonal function(CEOF)and so on.Results show that in the winter of a normal year(1981—1982),30—60 day oscillations in the subtropical zone are mainly in the northern and southern flanks of exit region of jet stream.In the ENSO year(1982— 1983),they are mainly in the vicinity of entrance and exit regions of jet stream.Intraseasonal changes of subtropical jet stream manifested themselves as latitudinal fluctuation or longitudinal progression or regression of about 40 day period.There are marked differences between propagat- ing passages of low frequency modes responsible for changes of subtropical jet stream in the normal year(1981—1982)and in the ENSO year(1982—1983).Changes of oscillation amplitude show obvious phases.In general,the one in late winter is stronger than that in early winter,strongest one occurs in February.展开更多
基金The Key Projects of the Guangdong Education Department under contract No.2019KZDXM019the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)under contract No.ZJW-2019-08+2 种基金High-Level Marine Discipline Team Project of Guangdong Ocean University under contract No.002026002009the Guangdong Graduate Academic Forum Project under contract No.230420003the"First Class"discipline construction platform project in 2019 of Guangdong Ocean University under contract No.231419026。
文摘This study presents an analysis of the spectral characteristics of remote sensing reflectance(Rrs)in northwestern South China Sea based on the in situ optical and water quality data for August 2018.Rrswas initially divided into four classes,classes A to D,using the max-classification algorithm,and the spectral properties of whole Rrs were characterized using the empirical orthogonal function(EOF)analysis.Subsequently,the dominant factors in each EOF mode were determined.The results indicated that more than 95%of the variances of Rrs are partly driven by the back-scattering characteristics of the suspended matter.The initial two EOF modes were well correlated with the total suspended matter and back-scattering coefficient.Furthermore,the first EOF modes of the four classes of Rrs(A-D Rrs-EOF1)significantly contributed to the total variances of each Rrs class.In addition,the correlation coefficients between the amplitude factors of class A-D Rrs-EOF1 and the variances of the relevant water quality and optical parameters were better than those of the unclassified ones.The spectral shape of class ARrs-EOF1 was governed by the absorption characteristic of chlorophyll a and colored dissolved organic matter(CDOM).The spectral shape of class B Rrs-EOF1 was governed by the absorption characteristic of CDOM since it exhibited a high correlation with the absorption coefficient of CDOM(ag(λ)),whereas the spectral shape of class C Rrs-EOF1 was governed by the back-scattering characteristics but not affected by the suspended matter.The spectral shape of class D Rrs-EOF1 exhibited a relatively good correlation with all the water quality parameters,which played a significant role in deciding its spectral shape.
基金Supported by the Fundamental Research Funds for the Central Universities(Nos.202341017,202313024)。
文摘Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).
基金supported by the CAS Innovation Key Program (Grant No. KZCX2-YW-BR-14)National Basic Research Program of China (2011CB309704)+1 种基金Special Scientific Research Project for Public Interest (GrantNo. GYHY201006021)the National Natural Science Foundation of China (Grant Nos. 40890155, 40775051,U0733002)
文摘Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level.
基金Key project of CAS, No.KZCX1-10-07 Key project of Cold and Arid Regions Environmental and Engineering Research Institute, CAS, No.CX210097 NSFC No.49805006.
文摘The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 stations covering 1961–1999 on the plateau is analyzed by rotated experience orthogonal function (REOF). The results show that there are four main frozen anomaly regions on the plateau, i.e., the northeastern, southeastern and southern parts of the plateau and Qaidam Basin. The freezing soil depths of the annual anomaly regions in the above representative stations show that there are different changing trends. The main trend, except for the Qaidam Basin, has been decreasing since the 1980s, a sign of the climate warming. Compared with the 1980s, on the average, the maximum soil depth decreased by about 0.02 m, 0.05 m and 0.14 m in the northeastern, southeastern and southern parts of the plateau, but increased by about 0.57 m in the Qaidam Basin during the 1990s. It means there are different responses to climate system in the above areas. The spectrum analysis reveals different change cycles: in higher frequency there is an about 2-year long cycle in Qaidam Basin and southern part of the plateau in the four representative areas whereas in lower frequency there is an about 14-year long cycle in all the four representative areas due to the combined influence of different soil textures and solutes in four areas.
基金The National Natural Science Foundation of China under contract No.41876014.
文摘Empirical orthogonal function(EOF)analysis was applied to a 50-year long time series of monthly mean positions of the Kuroshio path south of Japan from a regional reanalysis.Three leading EOF modes characterize the contributions from three typical paths of the Kuroshio meander:the typical large meander path,the offshore nonlarge meander path,and the nearshore non-large meander path,respectively.Accordingly,the spatial variation characteristics of oceanic anomaly fields can be depicted by their regression fields upon the associated three leading principal components(PCs),which are well-matched with the results of composite analysis corresponding to each period of the three typical Kuroshio paths.A new index for the typical large meander is defined by using the second leading PC,which is highly correlated with the Kushimoto-Uragami index.Spectral analysis of this new index series shows variability of the Kuroshio path south of Japan at time scales of about 7–8 years and 20 years.
基金The National Key Research and Development Program of China under contract No.2018YFC1406206the National Natural Science Foundation of China under contract No.41876014.
文摘Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.
基金National Natural Science Foundation of China(40805039)Key Laboratory of Meteorological Disaster of Ministry of Education Program Fund of Nanjing University of Information Science & Technology(KLME1303)China Meteorological Administration Special Public Welfare Research Fund(GHYH201306023 and GYHY201206013)
文摘Impacts of the Three Gorges Dam(TGD) in China on the regional pattern and annual amount of precipitation around the Three Gorges Reservoir(TGR) are examined by comparing observations before and after the operation of TGD(1984–2003 and 2004–13). Empirical orthogonal function(EOF) analysis of the annual precipitation anomalies clearly indicates that the land-use change associated with the construction of TGD has not significantly changed the precipitation pattern. To investigate the impacts of TGD on the rainfall amount, we compare the relative variations of atmospheric variables related to precipitation formation in three spatial bands: over TGR, near TGR, and far from TGR. It is found that the differences in annual rainfall over TGD between the two periods before and after the operation of TGD are small, suggesting a weak impact of TGD on the rainfall amount. The TGD water level increased from 66 m before June 2003 to 175 m after 2010, and this may have slightly reduced precipitation on the local scale.
基金This work was supported by the National Natural Science Foundation of China.
文摘Based on daily ECMWF gridpoint data of two winters during 1981—1983 including an ENSO year,propagation of low frequency oscillations(LFO)during Northern Hemisphere winters and their influences upon 30—60 day oscillations of the subtropical jet stream are studied with the sta- tistical methods as complex empirical orthogonal function(CEOF)and so on.Results show that in the winter of a normal year(1981—1982),30—60 day oscillations in the subtropical zone are mainly in the northern and southern flanks of exit region of jet stream.In the ENSO year(1982— 1983),they are mainly in the vicinity of entrance and exit regions of jet stream.Intraseasonal changes of subtropical jet stream manifested themselves as latitudinal fluctuation or longitudinal progression or regression of about 40 day period.There are marked differences between propagat- ing passages of low frequency modes responsible for changes of subtropical jet stream in the normal year(1981—1982)and in the ENSO year(1982—1983).Changes of oscillation amplitude show obvious phases.In general,the one in late winter is stronger than that in early winter,strongest one occurs in February.