In this paper a heterogeneous fault model of the Tangshan earthquake is suggested, which consists of two southern sub faults striking N30°E and two northern sub faults striking N50°E. Total length of the m...In this paper a heterogeneous fault model of the Tangshan earthquake is suggested, which consists of two southern sub faults striking N30°E and two northern sub faults striking N50°E. Total length of the main shock fault is 114 km and seismic moment is about 1.4×10 20 N·m. The epicentre of the main shock is located at the southern part, near the intersection of the two bands. Accelerations of two aftershocks ( M L 5.5, M S 6.9 ) were used as empirical Green's functions to synthesize the accelerations of the main shock in near and far field. A method that small events and main shock are considered not satisfying the similarity relationship in the improved empirical Green's function is also applied in this paper. Peak values, duration and response spectra of synthesized accelerations in far field are in agreement with the observed records. The synthesized results in near field are also in agreement with the epicentral intensity distribution of the main shock. The results show that the peak acceleration of Tangshan earthquake in epicentral region exceeds 1.1 g. It is consistent with the peak accelerations recorded in some large earthquakes occurred in recent years.展开更多
In this paper a group of long period seismic waves in Shanghai area induced by Taiwan large earthquake is presented by using the method of semi empirical Green function, the period is up to 20 s. Such seismic waves c...In this paper a group of long period seismic waves in Shanghai area induced by Taiwan large earthquake is presented by using the method of semi empirical Green function, the period is up to 20 s. Such seismic waves can be used as a reference curve to test the strength of long period structures and their aseismic design. The long period part of seismic influence curve presented in 'Architecture Aseismic Design Code'(GBJ11 89) is less than 3 s, and uncertainties exist in the effects of earthquake safety evaluation. This research will be able to eliminate these shortages.展开更多
The Menyuan area is an important transportation hub in the Hexi Corridor.The Menyuan M_(S)6.9 earthquake that occurred on January 8,2022 had a major impact on the local infrastructure and transportation of this region...The Menyuan area is an important transportation hub in the Hexi Corridor.The Menyuan M_(S)6.9 earthquake that occurred on January 8,2022 had a major impact on the local infrastructure and transportation of this region.Due to the high possibility of similar strong earthquakes occurring in this area in the future,preliminary assessment of the seismic intensity characteristics of destructive earthquakes in this region is essential for effective disaster control.This paper uses the empirical Green′s function(EGF)method as a numerical simulation tool to predict the ground motion intensity of Datong Autonomous County under the action of the scenario earthquake(M_(S)7.5).Seismic records of aftershocks of the 2016 Menyuan M_(S)6.4 earthquake were used as Green’s functions for this simulation.The uncertainties associated with various source parameters were considered,and 36possible earthquake scenarios were simulated to obtain 72 sets of horizontal ground motions in Datong County.The obtained peak ground acceleration(PGA)vs.time histories of the horizontal ground motion were screened using the attenuation relationships provided by the fifth-edition of China’s Seismic Ground Motion Parameter Zoning Map and the NGA-West2dataset.Ultimately,32 possible acceleration-time histories were selected for further analysis.The screened PGA values ranged from 78.8 to 153 cm/s^(2).The uncertainty associated with the initial rupture point was found to greatly affect the results of the earthquake simulation.The average acceleration spectrum of the selected acceleration-time history exceeded the expected spectrum of a intermediate earthquake,which means that buildings in Datong County might sustain some damage should the scenario earthquake occur.This research can provide reliable ground motion input for urban earthquake damage simulation and seismic design in Datong County.Growing the dataset of small earthquakes recorded in this region will facilitate the large-scale simulation of ground motions under different earthquake scenarios.展开更多
The hydraulic fracture technique is widely applied in the enhancement of petroleum and natural gas productions and in the development of geothermal energy. This technique is also used to create an underground fracture...The hydraulic fracture technique is widely applied in the enhancement of petroleum and natural gas productions and in the development of geothermal energy. This technique is also used to create an underground fracture zone system for disposal of solid and liquid wastes. This is the most recent development in the application of industrial techniques to environmental protection scientific problems. Knowledge of mechanical properties and geometrical parameters of a hydraulic fracture zone is important for both energy resource development and safe disposal of waste. Hydraulic fracturing often induces many microearthquakes.Analysis of the spatial temporal distribution of the induced seismicity yields the geometry of a hydraulic fracture zone, and kinetic and dynamic parameters associated with the fracture growth process. Applying a waveform correlation analysis and a space time grid search method, we precisely determined hypocentral locations for 157 microearthquakes induced by hydraulic fracturing. Spatial distribution of the induced seismicity celarly shows the dimension and orientation of a hydraulic fracture zone. Variation of the seismicity distribution in time and space was used to infer the growth rate and direction of the fracture zone. An empirical Greens function(EGF) method was applied to earthquake doublets to retrieve relative source time functions(RSTFs) and to estimate source parameters, such as seismic moment, source radius, and stress drop, for larger microearthquakes. Azimuthal variation of the RSTF of a master event indicates that the source ruptured to the northwest, which aggrees with the fracture zone growth direction. Large variation of stress drops for these induced earthquakes reflects the significant heterogeneity of mechanical properties in the hydraulic fracture zone.展开更多
文摘In this paper a heterogeneous fault model of the Tangshan earthquake is suggested, which consists of two southern sub faults striking N30°E and two northern sub faults striking N50°E. Total length of the main shock fault is 114 km and seismic moment is about 1.4×10 20 N·m. The epicentre of the main shock is located at the southern part, near the intersection of the two bands. Accelerations of two aftershocks ( M L 5.5, M S 6.9 ) were used as empirical Green's functions to synthesize the accelerations of the main shock in near and far field. A method that small events and main shock are considered not satisfying the similarity relationship in the improved empirical Green's function is also applied in this paper. Peak values, duration and response spectra of synthesized accelerations in far field are in agreement with the observed records. The synthesized results in near field are also in agreement with the epicentral intensity distribution of the main shock. The results show that the peak acceleration of Tangshan earthquake in epicentral region exceeds 1.1 g. It is consistent with the peak accelerations recorded in some large earthquakes occurred in recent years.
文摘In this paper a group of long period seismic waves in Shanghai area induced by Taiwan large earthquake is presented by using the method of semi empirical Green function, the period is up to 20 s. Such seismic waves can be used as a reference curve to test the strength of long period structures and their aseismic design. The long period part of seismic influence curve presented in 'Architecture Aseismic Design Code'(GBJ11 89) is less than 3 s, and uncertainties exist in the effects of earthquake safety evaluation. This research will be able to eliminate these shortages.
基金jointly supported by the National Key Research and Development Program(No.2019YFC1511004-02)Youth Fund of the National Natural Science Foundation(No.42104053)the Research Project Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB22B21)。
文摘The Menyuan area is an important transportation hub in the Hexi Corridor.The Menyuan M_(S)6.9 earthquake that occurred on January 8,2022 had a major impact on the local infrastructure and transportation of this region.Due to the high possibility of similar strong earthquakes occurring in this area in the future,preliminary assessment of the seismic intensity characteristics of destructive earthquakes in this region is essential for effective disaster control.This paper uses the empirical Green′s function(EGF)method as a numerical simulation tool to predict the ground motion intensity of Datong Autonomous County under the action of the scenario earthquake(M_(S)7.5).Seismic records of aftershocks of the 2016 Menyuan M_(S)6.4 earthquake were used as Green’s functions for this simulation.The uncertainties associated with various source parameters were considered,and 36possible earthquake scenarios were simulated to obtain 72 sets of horizontal ground motions in Datong County.The obtained peak ground acceleration(PGA)vs.time histories of the horizontal ground motion were screened using the attenuation relationships provided by the fifth-edition of China’s Seismic Ground Motion Parameter Zoning Map and the NGA-West2dataset.Ultimately,32 possible acceleration-time histories were selected for further analysis.The screened PGA values ranged from 78.8 to 153 cm/s^(2).The uncertainty associated with the initial rupture point was found to greatly affect the results of the earthquake simulation.The average acceleration spectrum of the selected acceleration-time history exceeded the expected spectrum of a intermediate earthquake,which means that buildings in Datong County might sustain some damage should the scenario earthquake occur.This research can provide reliable ground motion input for urban earthquake damage simulation and seismic design in Datong County.Growing the dataset of small earthquakes recorded in this region will facilitate the large-scale simulation of ground motions under different earthquake scenarios.
文摘The hydraulic fracture technique is widely applied in the enhancement of petroleum and natural gas productions and in the development of geothermal energy. This technique is also used to create an underground fracture zone system for disposal of solid and liquid wastes. This is the most recent development in the application of industrial techniques to environmental protection scientific problems. Knowledge of mechanical properties and geometrical parameters of a hydraulic fracture zone is important for both energy resource development and safe disposal of waste. Hydraulic fracturing often induces many microearthquakes.Analysis of the spatial temporal distribution of the induced seismicity yields the geometry of a hydraulic fracture zone, and kinetic and dynamic parameters associated with the fracture growth process. Applying a waveform correlation analysis and a space time grid search method, we precisely determined hypocentral locations for 157 microearthquakes induced by hydraulic fracturing. Spatial distribution of the induced seismicity celarly shows the dimension and orientation of a hydraulic fracture zone. Variation of the seismicity distribution in time and space was used to infer the growth rate and direction of the fracture zone. An empirical Greens function(EGF) method was applied to earthquake doublets to retrieve relative source time functions(RSTFs) and to estimate source parameters, such as seismic moment, source radius, and stress drop, for larger microearthquakes. Azimuthal variation of the RSTF of a master event indicates that the source ruptured to the northwest, which aggrees with the fracture zone growth direction. Large variation of stress drops for these induced earthquakes reflects the significant heterogeneity of mechanical properties in the hydraulic fracture zone.