Carboniferous source rocks identified by drilling in Santanghu (三塘湖) Basin were evaluated for their source potential, employing organic geochemistry and RockEval pyrolysis. The organic matter origin and depositio...Carboniferous source rocks identified by drilling in Santanghu (三塘湖) Basin were evaluated for their source potential, employing organic geochemistry and RockEval pyrolysis. The organic matter origin and depositional environment of these samples were also determined through biomarker analysis. Most of the Carboniferous source rocks in Santanghu Basin are characterised by high values of total organic carbon (TOC) content and high extractable organic matter content and hydrocarbon yields, indicating that they are organicrich source rocks with high oil generative potential. The organic matter is predominantly Type I and Type II kerogen with a minor contribution of Type III kerogen, as demonstrated by its pyrolysis parameters and carbon isotope values. According to Ro (%) and T max values, most of the studied samples are at earlyto middle-thermal mature stage; only a few of the samples are at a highly mature stage (past peak oil generation). The biomarker analysis reveals a dominance of algal/bacterial organic matter input, with a minor contribution of land plant material. Pr/Ph ratio supports a suboxic depositional condition, consistent with a neritic or marine-continental alternating environment proposed by predecessor.展开更多
Reviewing briefly the recent progress in a joint program of specifying the polar ionosphere primarily on the basis of ground magnetometer data, this paper em-phasizes the importance of processing data from around the ...Reviewing briefly the recent progress in a joint program of specifying the polar ionosphere primarily on the basis of ground magnetometer data, this paper em-phasizes the importance of processing data from around the world in real time for space weather predictions. The output parameters from the program include ionospheric electric fields and currents and field-aligned currents. These real-time records are essential for running computer simulations under realistic boundary conditions and thus for making numerical predictions of space weather efficient as reliable as possible. Data from individual ground magnetometers as well as from the solar wind are collected and are used as input for the KRM and AMIE mag-netogram-inversion algorithms, through which the two-dimensional distribution of the ionospheric parameters is calculated. One of the goals of the program is to specify the solar-terrestrial environment in terms of ionospheric processes and to provide the scientific community with more than what geomagnetic activity indices and statistical models indicate.展开更多
基金supported by the China Postdoctoral Science Foundation
文摘Carboniferous source rocks identified by drilling in Santanghu (三塘湖) Basin were evaluated for their source potential, employing organic geochemistry and RockEval pyrolysis. The organic matter origin and depositional environment of these samples were also determined through biomarker analysis. Most of the Carboniferous source rocks in Santanghu Basin are characterised by high values of total organic carbon (TOC) content and high extractable organic matter content and hydrocarbon yields, indicating that they are organicrich source rocks with high oil generative potential. The organic matter is predominantly Type I and Type II kerogen with a minor contribution of Type III kerogen, as demonstrated by its pyrolysis parameters and carbon isotope values. According to Ro (%) and T max values, most of the studied samples are at earlyto middle-thermal mature stage; only a few of the samples are at a highly mature stage (past peak oil generation). The biomarker analysis reveals a dominance of algal/bacterial organic matter input, with a minor contribution of land plant material. Pr/Ph ratio supports a suboxic depositional condition, consistent with a neritic or marine-continental alternating environment proposed by predecessor.
文摘Reviewing briefly the recent progress in a joint program of specifying the polar ionosphere primarily on the basis of ground magnetometer data, this paper em-phasizes the importance of processing data from around the world in real time for space weather predictions. The output parameters from the program include ionospheric electric fields and currents and field-aligned currents. These real-time records are essential for running computer simulations under realistic boundary conditions and thus for making numerical predictions of space weather efficient as reliable as possible. Data from individual ground magnetometers as well as from the solar wind are collected and are used as input for the KRM and AMIE mag-netogram-inversion algorithms, through which the two-dimensional distribution of the ionospheric parameters is calculated. One of the goals of the program is to specify the solar-terrestrial environment in terms of ionospheric processes and to provide the scientific community with more than what geomagnetic activity indices and statistical models indicate.