Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel(EN24) and nickel-based superalloy(IN718), and the microstructures of three distinct weld zones—the weld interface(W...Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel(EN24) and nickel-based superalloy(IN718), and the microstructures of three distinct weld zones—the weld interface(WI)/thermo-mechanically affected zone(TMAZ),the heat-affected zone(HAZ), and the base metal—were examined.The joint was observed to be free of defects but featured uneven flash formation.Electron backscatter diffraction(EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ.Moreover, significant refinement in grain size(2 –5 μm) was observed at the WI/TMAZ with reference to the base metal.The possible causes of these are discussed.The microhardness profile across the welded joint shows variation in hardness.The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates.The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.展开更多
The requirements of high quality machined surface as well as demand of enhanced contact time of cutting tools drive towards adopting multilayer coated carbide inserts. The industry requires higher productivity, hence ...The requirements of high quality machined surface as well as demand of enhanced contact time of cutting tools drive towards adopting multilayer coated carbide inserts. The industry requires higher productivity, hence higher machining parameters need to be used in order to meet the industry requirements. The alloy steel material used to fabricate machine parts consists of alloying elements like nickel, chromium and molybdenum difficult to machine, since the cutting tool fails by high tool wear, if we use uncoated carbide inserts to machine alloy steels. Hence in the present research work it is intended to use tungsten carbide inserts coated with different coatings for the experiments. The turning experiments were carried out using different grades of uncoated and coated carbide inserts of identical tool signature. The cutting speed selected for the experiments was 100 to 500 m/min in steps of 100 m/min, and the feed per revolution was 0.1 mm to 0.4 mm in step of 0.1 mm. The experimentation was carried out following ISO3685 standards. The results of the experiments revealed that the surface roughness measured was the least at cutting speed 500 m/min and feed per revolution of 0.1 mm, however the chip breaking found better when the feed used was greater than 0.2 mm/revolution.展开更多
Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a co...Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.展开更多
基金Kalyani Centre for Technology & Innovation (KCTI)Bharat Forge Ltd, Pune+1 种基金Department of Scientific and Industrial Research (DSIR)goverment of India for providing financial assistance, library, and laboratory facilities。
文摘Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel(EN24) and nickel-based superalloy(IN718), and the microstructures of three distinct weld zones—the weld interface(WI)/thermo-mechanically affected zone(TMAZ),the heat-affected zone(HAZ), and the base metal—were examined.The joint was observed to be free of defects but featured uneven flash formation.Electron backscatter diffraction(EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ.Moreover, significant refinement in grain size(2 –5 μm) was observed at the WI/TMAZ with reference to the base metal.The possible causes of these are discussed.The microhardness profile across the welded joint shows variation in hardness.The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates.The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.
文摘The requirements of high quality machined surface as well as demand of enhanced contact time of cutting tools drive towards adopting multilayer coated carbide inserts. The industry requires higher productivity, hence higher machining parameters need to be used in order to meet the industry requirements. The alloy steel material used to fabricate machine parts consists of alloying elements like nickel, chromium and molybdenum difficult to machine, since the cutting tool fails by high tool wear, if we use uncoated carbide inserts to machine alloy steels. Hence in the present research work it is intended to use tungsten carbide inserts coated with different coatings for the experiments. The turning experiments were carried out using different grades of uncoated and coated carbide inserts of identical tool signature. The cutting speed selected for the experiments was 100 to 500 m/min in steps of 100 m/min, and the feed per revolution was 0.1 mm to 0.4 mm in step of 0.1 mm. The experimentation was carried out following ISO3685 standards. The results of the experiments revealed that the surface roughness measured was the least at cutting speed 500 m/min and feed per revolution of 0.1 mm, however the chip breaking found better when the feed used was greater than 0.2 mm/revolution.
文摘Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.