To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based...To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication.展开更多
A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation. System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext spa...A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation. System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext space expanded greatly. The security of the proposed algorithm is analysed in detail and the schematic physical implementation is also provided. It is shown that the algorithm, which can prevent quantum attack strategy as well as classical attack strategy, is effective to protect qubits. Finally, we extend our algorithm to encrypt classical binary bits and quantum entanglements.展开更多
In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make ...In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make a gravity influence on the pixel positions in the permutation stage. Then, for each pixel in every step of the diffusion stage, the pixel summation calculated from the permuted image is updated. The values from a chaotic sequence generated by an intertwining logistic map are selected by this summation. Consequently, the keystreams generated in both stages are dependent on both the plain image and the permuted image. Because of the sensitivity of the chaotic map to its initial conditions and the plain-imagedependent keystreams, any tiny change in the secret key or the plain image would lead to a significantly different cipher image. As a result, the proposed encryption algorithm is immune to the known plaintext attack(KPA) and the chosen plaintext attack(CPA). Moreover, experimental simulations and security analyses show that the proposed permutationdiffusion encryption scheme can achieve a satisfactory level of security.展开更多
A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. F...A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.展开更多
Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process o...Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process of image compression are modified by keys in order to achieve image joint compression encryption. Combined with the bit-plane coding technique, the discrete wavelet transform coefficients in different resolutions can be encrypted respectively with different keys, so that the resolution selective encryption is realized to meet different application needs. Zero-tree coding is improved, and adaptive arithmetic coding is introduced. Then, the proposed joint compression-encryption algorithm is simulated. The simulation results show that as long as the parameters are selected appropriately, the compression efficiency of proposed image joint compression-encryption algorithm is basically identical to that of the original image compression algorithm, and the security of the proposed algorithm is better than the joint encryption algorithm based on interval splitting.展开更多
This paper observes approaches to algebraic analysis of GOST 28147-89 encryption algorithm (also known as simply GOST), which is the basis of most secure information systems in Russia. The general idea of algebraic an...This paper observes approaches to algebraic analysis of GOST 28147-89 encryption algorithm (also known as simply GOST), which is the basis of most secure information systems in Russia. The general idea of algebraic analysis is based on the representation of initial encryption algorithm as a system of multivariate quadratic equations, which define relations between a secret key and a cipher text. Extended linearization method is evaluated as a method for solving the nonlinear sys- tem of equations.展开更多
A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is stil...A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data.展开更多
This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by inform...This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by information entropy analysis it is concluded that the security of this algorithm is higher compared with the original image;And a new image encryption and decryption algorithm based on the combination of two-stage Logistic mapping and <i>M</i> sequence is proposed. This new algorithm is very sensitive to keys;the key space is large and its security is higher than two-stage Logistic mapping of image encryption and decryption technology.展开更多
This article explains the imbalance in DES and introduces the operators in IDEA. At last it puts forward a Unsym-metrical Block Encryption Algorithm which is achieved by adding some operators to DES.
In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline ar...In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline architecture and reconfigurable technology for the design and implementation of the AES IP core is proposed. The encryption and decryption processes of the AES algorithm are achieved in the same process within the mixed pipeline structure. According to the finite field characterizations, the Sbox in the AES algorithm is optimized. ShiftRow and MixColumn, which are the main components in AES round transformation, are optimized with the reconfigurable technology. The design is implemented on the Xilinx Virtex2p xc2vp20-7 field programmable gate array (FPGA) device. It can achieve a data throughput above 2.58 Gbit/s, and it only requires 3 233 slices. Compared with other related designs of AES IP cores on the same device, the proposed design can achieve a tradeoff between speed and area, and obtain satisfactory results in both data throughput and hardware resource consumption.展开更多
With the rapid development of internet technology and the increasing popularity of e-commerce, data encryption technology plays a very important role in data security. Information security has two aspects: security pr...With the rapid development of internet technology and the increasing popularity of e-commerce, data encryption technology plays a very important role in data security. Information security has two aspects: security protocol and cryptographic algorithm and the latter is the foundation and core technology of information security. Advanced Encryption Standard (AES) encryption algorithm is one of the most commonly used algorithms in symmetric encryption algorithms. Such algorithms face issues when used in the context of key management and security functions. This paper focuses on the systematic analysis of these issues and summarizes AES algorithm implementation, comprehensive application and algorithm comparison with other existing methods. To analyze the performance of the proposed algorithm and to make full use of the advantages of AES encryption algorithm, one needs to reduce round key and improve the key schedule, as well as organically integrate with RSA algorithm. Java language is used to implement the algorithm due to its large library, then to show the efficiency of the proposed method we compare different parameters, such as encryption/decryption speed, entropies and memory consumption...) with a classic algorithm. Based on the results of the comparison between AES and the hybrid AES algorithm, the proposed algorithm shows good performance and high security. It therefore can be used for key management and security functions, particularly for sharing sensitive files through insecure channel. This analysis provides a reference useful for selecting different encryption algorithms according to different business needs.展开更多
As a typical technology for optical encryption,phase retrieval algorithms have been widely used in optical information encryption and authentication systems.This paper presents three applications of two-dimensional(2D...As a typical technology for optical encryption,phase retrieval algorithms have been widely used in optical information encryption and authentication systems.This paper presents three applications of two-dimensional(2D)phase retrieval for optical encryption and authentication:first,a hierarchical image encryption system,by which multiple images can be hidden into cascaded multiple phase masks;second,a multilevel image authentication system,which combines(t,n)threshold secret sharing(both t and n are positive integers,and t≤n)and phase retrieval,and provides both high-level and low-level authentication;and finally,a hierarchical multilevel authentication system that combines the secret sharing scheme based on basic vector operations and the phase retrieval,by which more certification images can be encoded into multiple cascaded phase masks of different hierarchical levels.These three phase retrieval algorithms can effectively illustrate phase-retrievalbased optical information security.The principles and features of each phase-retrieval-based optical security method are analyzed and discussed.It is hoped that this review will illustrate the current development of phase retrieval algorithms for optical information security and will also shed light on the future development of phase retrieval algorithms for optical information security.展开更多
Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption S...Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption Standard (AES) algorithm is widely applied in government department and commerce. This paper analyzed the AES algorithms with different cipher keys, adopted a novel key scheduler that generated the round key real-time, proposed a dynamically reconfigurable encryption system which supported the AES algorithm with different cipher keys, and designed the architecture of the reconfigurable system. The dynamically reconfigurable AES system had been realized on FPGA. The result proves that the reconfigurable AES system is flexible, lower cost and high security level.展开更多
Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,d...Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,demonstrating both a hardware and a software implementation.With minor modifications to the hardware accelerators,latency can be reduced to half.Furthermore,we also propose a seminal and more efficient scheme,where we integrate the technology of encryption into the compression algorithm.Our new integrated optimization scheme reaches an increase of 1.6X by using parallel software scheme However,the security level of our new scheme is not desirable compare with previous ones.Fortunately,we prove that this does not affect the application of our schemes.展开更多
The EIGamal algorithm, which can be used for both signature and encryption, is of importance in public-key cryptosystems. However, there has arisen an issue that different criteria of selecting a random number are use...The EIGamal algorithm, which can be used for both signature and encryption, is of importance in public-key cryptosystems. However, there has arisen an issue that different criteria of selecting a random number are used for the same algorithm. In the aspects of the sufficiency, necessity, security and computational overhead of parameter selection, this paper analyzes these criteria in a comparative manner and points out the insecurities in some textbook cryptographic schemes. Meanwhile, in order to enhance security a novel generalization of the EIGamal signature scheme is made by expanding the range of selecting random numbers at an acceptable cost of additional computation, and its feasibility is demonstrated.展开更多
基金the Basic Scientific Research Projects of Colleges and Universities of Liaoning Province (Grant Nos. 2017J045)Provincial Natural Science Foundation of Liaoning (Grant Nos. 20170540060)
文摘To reduce the bandwidth and storage resources of image information in communication transmission, and improve the secure communication of information. In this paper, an image compression and encryption algorithm based on fractional-order memristive hyperchaotic system and BP neural network is proposed. In this algorithm, the image pixel values are compressed by BP neural network, the chaotic sequences of the fractional-order memristive hyperchaotic system are used to diffuse the pixel values. The experimental simulation results indicate that the proposed algorithm not only can effectively compress and encrypt image, but also have better security features. Therefore, this work provides theoretical guidance and experimental basis for the safe transmission and storage of image information in practical communication.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60472018 and 90104005) and by the Doctoral Programs Foundation of the Ministry of Education of China (Grant No 20020247063).
文摘A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation. System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext space expanded greatly. The security of the proposed algorithm is analysed in detail and the schematic physical implementation is also provided. It is shown that the algorithm, which can prevent quantum attack strategy as well as classical attack strategy, is effective to protect qubits. Finally, we extend our algorithm to encrypt classical binary bits and quantum entanglements.
基金supported by the National Natural Science Foundation of China(Grant Nos.61602124,61273021,11526057,and 11301091)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2016A030310333,2015A030313614,and 2015A030313620)+3 种基金the Science & Technology Planning Projects of Zhanjiang City,China(Grant Nos.2015B01098 and 2015B01051)the Project Foundation of Chongqing Municipal Education Committee of China(Grant No.KJ1500501)the Program for Scientific Research Start-up Funds of Guangdong Ocean University of Chinathe Special Funding Program for Excellent Young Scholars of Guangdong Ocean University of China
文摘In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make a gravity influence on the pixel positions in the permutation stage. Then, for each pixel in every step of the diffusion stage, the pixel summation calculated from the permuted image is updated. The values from a chaotic sequence generated by an intertwining logistic map are selected by this summation. Consequently, the keystreams generated in both stages are dependent on both the plain image and the permuted image. Because of the sensitivity of the chaotic map to its initial conditions and the plain-imagedependent keystreams, any tiny change in the secret key or the plain image would lead to a significantly different cipher image. As a result, the proposed encryption algorithm is immune to the known plaintext attack(KPA) and the chosen plaintext attack(CPA). Moreover, experimental simulations and security analyses show that the proposed permutationdiffusion encryption scheme can achieve a satisfactory level of security.
基金supported by the National Natural Science Foundation of China (Grant No. 61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (Grant No. MMJJ20170203)+3 种基金Liaoning Province Science and Technology Innovation Leading Talents Program Project (Grant No. XLYC1802013)Key R&D Projects of Liaoning Province (Grant No. 2019020105JH2/103)Jinan City ‘20 Universities’ Funding Projects Introducing Innovation Team Program (Grant No. 2019GXRC031)Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (Grant No. MIMS20-M-02)。
文摘A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.
基金supported by the Natural Science Foundation of Hainan Province, China (Grant No. 613155)
文摘Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process of image compression are modified by keys in order to achieve image joint compression encryption. Combined with the bit-plane coding technique, the discrete wavelet transform coefficients in different resolutions can be encrypted respectively with different keys, so that the resolution selective encryption is realized to meet different application needs. Zero-tree coding is improved, and adaptive arithmetic coding is introduced. Then, the proposed joint compression-encryption algorithm is simulated. The simulation results show that as long as the parameters are selected appropriately, the compression efficiency of proposed image joint compression-encryption algorithm is basically identical to that of the original image compression algorithm, and the security of the proposed algorithm is better than the joint encryption algorithm based on interval splitting.
文摘This paper observes approaches to algebraic analysis of GOST 28147-89 encryption algorithm (also known as simply GOST), which is the basis of most secure information systems in Russia. The general idea of algebraic analysis is based on the representation of initial encryption algorithm as a system of multivariate quadratic equations, which define relations between a secret key and a cipher text. Extended linearization method is evaluated as a method for solving the nonlinear sys- tem of equations.
文摘A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data.
文摘This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by information entropy analysis it is concluded that the security of this algorithm is higher compared with the original image;And a new image encryption and decryption algorithm based on the combination of two-stage Logistic mapping and <i>M</i> sequence is proposed. This new algorithm is very sensitive to keys;the key space is large and its security is higher than two-stage Logistic mapping of image encryption and decryption technology.
文摘This article explains the imbalance in DES and introduces the operators in IDEA. At last it puts forward a Unsym-metrical Block Encryption Algorithm which is achieved by adding some operators to DES.
文摘In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline architecture and reconfigurable technology for the design and implementation of the AES IP core is proposed. The encryption and decryption processes of the AES algorithm are achieved in the same process within the mixed pipeline structure. According to the finite field characterizations, the Sbox in the AES algorithm is optimized. ShiftRow and MixColumn, which are the main components in AES round transformation, are optimized with the reconfigurable technology. The design is implemented on the Xilinx Virtex2p xc2vp20-7 field programmable gate array (FPGA) device. It can achieve a data throughput above 2.58 Gbit/s, and it only requires 3 233 slices. Compared with other related designs of AES IP cores on the same device, the proposed design can achieve a tradeoff between speed and area, and obtain satisfactory results in both data throughput and hardware resource consumption.
文摘With the rapid development of internet technology and the increasing popularity of e-commerce, data encryption technology plays a very important role in data security. Information security has two aspects: security protocol and cryptographic algorithm and the latter is the foundation and core technology of information security. Advanced Encryption Standard (AES) encryption algorithm is one of the most commonly used algorithms in symmetric encryption algorithms. Such algorithms face issues when used in the context of key management and security functions. This paper focuses on the systematic analysis of these issues and summarizes AES algorithm implementation, comprehensive application and algorithm comparison with other existing methods. To analyze the performance of the proposed algorithm and to make full use of the advantages of AES encryption algorithm, one needs to reduce round key and improve the key schedule, as well as organically integrate with RSA algorithm. Java language is used to implement the algorithm due to its large library, then to show the efficiency of the proposed method we compare different parameters, such as encryption/decryption speed, entropies and memory consumption...) with a classic algorithm. Based on the results of the comparison between AES and the hybrid AES algorithm, the proposed algorithm shows good performance and high security. It therefore can be used for key management and security functions, particularly for sharing sensitive files through insecure channel. This analysis provides a reference useful for selecting different encryption algorithms according to different business needs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775121,61605165,61307003,61405122,and 11574311)the Key Research and Development Program of Shandong Province,China(Grant No.2018GGX101002)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019QF006)the Fundamental Research Funds of Shandong University,China(Grant No.2015GN031)
文摘As a typical technology for optical encryption,phase retrieval algorithms have been widely used in optical information encryption and authentication systems.This paper presents three applications of two-dimensional(2D)phase retrieval for optical encryption and authentication:first,a hierarchical image encryption system,by which multiple images can be hidden into cascaded multiple phase masks;second,a multilevel image authentication system,which combines(t,n)threshold secret sharing(both t and n are positive integers,and t≤n)and phase retrieval,and provides both high-level and low-level authentication;and finally,a hierarchical multilevel authentication system that combines the secret sharing scheme based on basic vector operations and the phase retrieval,by which more certification images can be encoded into multiple cascaded phase masks of different hierarchical levels.These three phase retrieval algorithms can effectively illustrate phase-retrievalbased optical information security.The principles and features of each phase-retrieval-based optical security method are analyzed and discussed.It is hoped that this review will illustrate the current development of phase retrieval algorithms for optical information security and will also shed light on the future development of phase retrieval algorithms for optical information security.
基金Supported by the National Natural Science Foun-dation of China (60374008)
文摘Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption Standard (AES) algorithm is widely applied in government department and commerce. This paper analyzed the AES algorithms with different cipher keys, adopted a novel key scheduler that generated the round key real-time, proposed a dynamically reconfigurable encryption system which supported the AES algorithm with different cipher keys, and designed the architecture of the reconfigurable system. The dynamically reconfigurable AES system had been realized on FPGA. The result proves that the reconfigurable AES system is flexible, lower cost and high security level.
基金partially supported by National Natural Science Foundation of China(No. 61202475,61572294,61502218)Outstanding Young Scientists Foundation Grant of Shandong Province(No.BS2014DX016)+3 种基金Nature Science Foundation of Shandong Province (No.ZR2012FQ029)Ph.D.Programs Foundation of Ludong University(No.LY2015033)Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund(Fujian Normal University)(No.15004)the Priority Academic Program Development of Jiangsu Higer Education Institutions,Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology
文摘Compression and encryption are widely used in network traffic in order to improve efficiency and security of some systems.We propose a scheme to concatenate both functions and run them in a paralle pipelined fashion,demonstrating both a hardware and a software implementation.With minor modifications to the hardware accelerators,latency can be reduced to half.Furthermore,we also propose a seminal and more efficient scheme,where we integrate the technology of encryption into the compression algorithm.Our new integrated optimization scheme reaches an increase of 1.6X by using parallel software scheme However,the security level of our new scheme is not desirable compare with previous ones.Fortunately,we prove that this does not affect the application of our schemes.
基金Supported by National Natural Science Foundation of China (No. 60272011) and the Special Fund for Cultivating Excellent Scholars of Beijing Municipality (No.20042D0500103)
文摘The EIGamal algorithm, which can be used for both signature and encryption, is of importance in public-key cryptosystems. However, there has arisen an issue that different criteria of selecting a random number are used for the same algorithm. In the aspects of the sufficiency, necessity, security and computational overhead of parameter selection, this paper analyzes these criteria in a comparative manner and points out the insecurities in some textbook cryptographic schemes. Meanwhile, in order to enhance security a novel generalization of the EIGamal signature scheme is made by expanding the range of selecting random numbers at an acceptable cost of additional computation, and its feasibility is demonstrated.