Vibration problems of a segment of winding between two clamping plates are studied when the clamping plates, which are used to fix stator end winding, are loose. First, magnetic induction expressions of the winding wh...Vibration problems of a segment of winding between two clamping plates are studied when the clamping plates, which are used to fix stator end winding, are loose. First, magnetic induction expressions of the winding while the generator was running were given by using separation of variables method. Also, the expressions of the winding electromagnetic force and dry friction force between loosing clamping plates were gotten. Secondly, a mechanical model, which was used to study nonlinear vibration problem of the winding,was set up. Fundamental resonance was analyzed by using multiple scales method, and a resonance equation of amplitude and frequency in steady state was given. Then stability, bifurcation and singularity of the steady solution were studied. Criterions of stability and transition set of the bifurcation equation were obtained. At last, through numerical calculations, resonance curves were obtained. The results are helpful for analysis and protection of generator accidents.展开更多
End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windin...End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.展开更多
The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the ef...The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.展开更多
The end windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage (especially in case of resonance) and noise. To avoid this, it is important to predict the natural...The end windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage (especially in case of resonance) and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements during the design process. Hence, a material model of the complete stator bar is necessary. This paper shows the development of such a material model. The composite structure of a stator bar is quite complex and makes it impossible to provide a quick calculation of the eigenvalues. That is the reason for using a suitable, homogeneously, geometry based solid model. Special attention was paid to the experimental determination of the material characteristics of the orthotropic composite space brackets. The numerical results have been evaluated against measurements. Eigenvalues, Young's modulus, and shear modulus have been experimentally investigated.展开更多
文摘Vibration problems of a segment of winding between two clamping plates are studied when the clamping plates, which are used to fix stator end winding, are loose. First, magnetic induction expressions of the winding while the generator was running were given by using separation of variables method. Also, the expressions of the winding electromagnetic force and dry friction force between loosing clamping plates were gotten. Secondly, a mechanical model, which was used to study nonlinear vibration problem of the winding,was set up. Fundamental resonance was analyzed by using multiple scales method, and a resonance equation of amplitude and frequency in steady state was given. Then stability, bifurcation and singularity of the steady solution were studied. Criterions of stability and transition set of the bifurcation equation were obtained. At last, through numerical calculations, resonance curves were obtained. The results are helpful for analysis and protection of generator accidents.
文摘End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.
基金This research was funded by Dongfang Electric Machinery Co., Ltd.
文摘The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.
文摘The end windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage (especially in case of resonance) and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements during the design process. Hence, a material model of the complete stator bar is necessary. This paper shows the development of such a material model. The composite structure of a stator bar is quite complex and makes it impossible to provide a quick calculation of the eigenvalues. That is the reason for using a suitable, homogeneously, geometry based solid model. Special attention was paid to the experimental determination of the material characteristics of the orthotropic composite space brackets. The numerical results have been evaluated against measurements. Eigenvalues, Young's modulus, and shear modulus have been experimentally investigated.