The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio...The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.展开更多
BACKGROUND: Partial pressure of end-tidal carbon dioxide(PETCO2) has been used to monitor the effectiveness of precordial compression(PC) and regarded as a prognostic value of outcomes in cardiopulmonary resuscitation...BACKGROUND: Partial pressure of end-tidal carbon dioxide(PETCO2) has been used to monitor the effectiveness of precordial compression(PC) and regarded as a prognostic value of outcomes in cardiopulmonary resuscitation(CPR). This study was to investigate changes of PETCO2 during CPR in rats with ventricular fi brillation(VF) versus asphyxial cardiac arrest.METHODS: Sixty-two male Sprague-Dawley(SD) rats were randomly divided into an asphyxial group(n=32) and a VF group(n=30). PETCO2 was measured during CPR from a 6-minute period of VF or asphyxial cardiac arrest.RESULTS: The initial values of PETCO2 immediately after PC in the VF group were signifi cantly lower than those in the asphyxial group(12.8±4.87 mmHg vs. 49.2±8.13 mmHg, P=0.000). In the VF group, the values of PETCO2 after 6 minutes of PC were significantly higher in rats with return of spontaneous circulation(ROSC), compared with those in rats without ROSC(16.5±3.07 mmHg vs. 13.2±2.62 mmHg, P=0.004). In the asphyxial group, the values of PETCO2 after 2 minutes of PC in rats with ROSC were signifi cantly higher than those in rats without ROSC(20.8±3.24 mmHg vs. 13.9±1.50 mmHg, P=0.000). Receiver operator characteristic(ROC) curves of PETCO2 showed signifi cant sensitivity and specifi city for predicting ROSC in VF versus asphyxial cardiac arrest.CONCLUSIONS: The initial values of PETCO2 immediately after CPR may be helpful in differentiating the causes of cardiac arrest. Changes of PETCO2 during CPR can predict outcomes of CPR.展开更多
To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide par...To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake,Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4(mean±standard deviation)μatm (latm=1.013 25×10^5pa), 416.3±217.0μatm, 576.5±758.8μatm, 304.2±9.43.5μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m^2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (--0.58±12.9mmol/m^2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×10^4 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively.展开更多
The purpose of this study was to investigate the effect of nonadrenergic agents on cardiopulmonary resuscitation (CPR) and end-tidal CO2(ETCO2)during CPR in a rodent model. Our results suggested that: 1) coronary perf...The purpose of this study was to investigate the effect of nonadrenergic agents on cardiopulmonary resuscitation (CPR) and end-tidal CO2(ETCO2)during CPR in a rodent model. Our results suggested that: 1) coronary perfusion pressure (CPP) after drugs infusion was increased significantly by methoxamine, arginine vasopresin (AVP) and angiotension- Ⅱ(ANG- Ⅱ), but not by endothelin-1 (ET-1): 2) ETCO2 prior to defibrillation was decreased significantly by a pure a1 adrenergic agents,methoxamine and were increased significantly by non-adrenergic agents, ANG-Ⅱ and ET-1 during rodent CPR;3) a significant positive correlation between ETCO2 and CPP was observed in AVP group, suggesting that AVP have little effect on pulmonary circulation; and 4) methoxamine, AVP and ANG-Ⅱ have similar effect on resuscitability during rodent CPR.展开更多
Background: We investigated the differences between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide (P(a-ET)CO2) with respect to the Broca-Katsura index (BKI), which is an obesity index, in ob...Background: We investigated the differences between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide (P(a-ET)CO2) with respect to the Broca-Katsura index (BKI), which is an obesity index, in obese patients during general anesthesia. Materials and Methods: From January 2003 to December 2013, we studied 601 patients aged 16 years old or over undergoing general anesthesia. Patients had American Society of Anesthesiology physical status I and II and we reviewed their anesthetic charts. The P(a-ET)CO2 with respect to the BKI divided patients into two groups: 16 to 2 values between the two groups. Results: In patients aged 16 to 2 was 2.2 ± 3.1 mmHg at BKI 2 was 3.2 ± 4.1 mmHg at BKI 2 tends to increase in obese patients during general anesthesia with increasing BKI in patients aged 16 to < 65 years old.展开更多
Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimenta...Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimentary rocks fractured by ScCO_(2).The breakdown pressure,fracture parameters,mineral composition,bedding plane angle and permeability are discussed.We also compare the differences between sedimentary rock and granite fractured by ScCO_(2),ultimately noting problems and suggesting solutions and strategies for the future.The analysis found that the breakdown pressure of ScCO_(2)was reduced 6.52%–52.31%compared with that of using water.ScCO_(2)tends to produce a complex fracture morphology with significantly higher permeability.When compared with water,the fracture aperture of ScCO_(2)was decreased by 4.10%–72.33%,the tortuosity of ScCO_(2)was increased by 5.41%–70.98%and the fractal dimension of ScCO_(2)was increased by 4.55%–8.41%.The breakdown pressure of sandstone is more sensitive to the nature of the fracturing fluid,but fracture aperture is less sensitive to fracturing fluid than for shale and coal.Compared with granite,the tortuosity of sedimentary rock is more sensitive to the fracturing fluid and the fracture fractal dimension is less sensitive to the fracturing fluid.Existing research shows that ScCO_(2)has the advantages of low breakdown pressure,good fracture creation and environmental protection.It is recommended that research be conducted in terms of sample terms,experimental conditions,effectiveness evaluation and theoretical derivation in order to promote the application of ScCO_(2)reformed reservoirs in the future.展开更多
In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have b...In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have been measured in a fixed-bed, and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained. A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics, using the Langmuir equation to describe the adsorption equilibrium isotherm. The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied. The experimental results were compared with the ones predicted by the model adapted to a PSA system. Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle. These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.展开更多
Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a ...Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project.展开更多
BACKGROUND Endoscopic thyroidectomy has obvious advantages over conventional surgical techniques in terms of postoperative cosmetic outcome.Although the incidence of carbon dioxide embolism(CDE)during endoscopic thyro...BACKGROUND Endoscopic thyroidectomy has obvious advantages over conventional surgical techniques in terms of postoperative cosmetic outcome.Although the incidence of carbon dioxide embolism(CDE)during endoscopic thyroidectomy is very low,it is potentially fatal.The clinical manifestations of CDE vary,and more attention should be paid to this disorder.CASE SUMMARY A 27-year-old man was scheduled for thyroidectomy by the transoral vestibular approach.The patient had no other diseases or surgical history.During the operation,he developed a CDE following inadvertent injury of the anterior jugular vein.The clinical manifestation in this patient was a transient sharp rise in end-tidal carbon dioxide,and his remaining vital signs were stable.In addition,loud coarse systolic and diastolic murmurs were heard over the precordium.The patient was discharged on day 4 after surgery without complications.CONCLUSION A transient sharp rise in end-tidal carbon dioxide is considered a helpful early sign of CDE during endoscopic thyroidectomy.展开更多
It is important to understand the process of multiphase carbon dioxide(CO_(2))leakage in faults for the risk assessment of carbon capture and storage(CCS).To quantitatively characterize the CO_(2)leakage process in th...It is important to understand the process of multiphase carbon dioxide(CO_(2))leakage in faults for the risk assessment of carbon capture and storage(CCS).To quantitatively characterize the CO_(2)leakage process in the fault,pressure sensors,fiber Bragg grating(FBG)temperature and strain sensors were simultaneously used to monitor CO_(2)leakage in the fault.Ten experiments were carried out,including five groups of gaseous CO_(2)leakage tests with initial pressures of 1-5 MPa and five groups of liquid CO_(2)leakage tests with initial pressures of 6-10 MPa.The results indicate that when liquid CO_(2)leaked with an initial pressure of 7-10 MPa,the pressure and temperature of CO_(2)dropped rapidly in the first few seconds and then remained unchanged.The behavior that CO_(2)continues to leak while maintaining temperature and pressure unchanged is defined as“temporary pseudo-sealing(TPS)”behavior,which continues for the first 1/3 of the leakage period.However,this TPS behavior did not occur in gaseous CO_(2)leakage.If only the pressure and temperature data were used to evaluate whether CO_(2)leakage occurred,we would misjudge the risk of leakage in CCS projects during the TPS period.The causes and conditions of TPS behavior were further studied experimentally.The results show that:(1)TPS behavior is caused by the phase transition energy generated when liquid CO_(2)leaks.(2)The condition for TPS behavior is a small leak aperture(0.2 mm).Only a small leakage rate can make the phase transition energy and pressure change from a dynamic equilibrium,and(3)The compression zone caused by the Bernoulli effect and fault“barrier”could reduce the CO_(2)leakage rate and further promote the occurrence of TPS behavior.This study provides technical and theoretical support for the quantitative characterization of the CO_(2)leakage process in faults of CCS projects.展开更多
This paper aims at using of an approach integrating the fuzzy logic strategy for hypoxemic hypoxia tissue blood carbon dioxide human optimal control problem. To test the efficiency of this strategy, the authors propos...This paper aims at using of an approach integrating the fuzzy logic strategy for hypoxemic hypoxia tissue blood carbon dioxide human optimal control problem. To test the efficiency of this strategy, the authors propose a numerical comparison with the direct method by taking the values of determinant parameters of cardiovascular-respiratory system for a 30 years old woman in jogging as her regular physical activity. The results are in good agreement with experimental data.展开更多
Complexation combined with supercritical fluid extraction was used to extract Cu2+ in this study. The effects of pressure, temperature, volume of CO2 on the efficiency of extraction were systematically investigated. A...Complexation combined with supercritical fluid extraction was used to extract Cu2+ in this study. The effects of pressure, temperature, volume of CO2 on the efficiency of extraction were systematically investigated. At the optimum condition a 57.32% recovery was achieved. Addition of suitable amount of methanol (v/v = 5%) to the supercritical CO2 can increase in the extraction of Cu2+ (72.69%, RSD = 2.12%, n = 3). And the recovery can further increase in the presence of non-ionic surfactant Triton X-100 because of its function of solubilization. Surfactant was first used in the extraction of metal ions in the present study, and the results are satisfied (90.52%, RSD = 2.20%, n = 3).展开更多
Supercritical carbon dioxide(SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homog...Supercritical carbon dioxide(SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homogeneous hydroformylation of propylene in supercritical carbon dioxide( SC-CO2 ) , which is an example of this kind of application of carbon dioxide. The determination for the critical parameters of carbon dioxide + butyraldehyde mixtures is necessary for this reaction design which is the focus of the present paper. The critical parameters of the binary systems were determined via the static visual method at a constant volume with the molar fraction of butyraldehyde ranging from 1.0% to 2. 2% and the pressure ranging from 5 to 10 MPa. The experimental results show that the critical pressure and temperature increased with increasing the molar fraction of butyraldehyde. The bubble(dew) temperatures and the bubble (dew) pressures for the binary systems were also determined experimentally. The p-T Figures at different compositions of the binary systems were described. In addition, the critical compressibility factors Zc of the binary systems at different concentrations of n-butyraldehyde were calculated. It was found that the critical compressibility factor values of the binary systems decreased with increasing the molar fraction of n-butyraldehyde in the experimental range.展开更多
Carbon Capture, Utilization and Storage (CCUS) has been regarded as an indispensable, strategic and pressing technology to reduce anthropogenic carbon dioxide emissions, and mitigate the severe consequences of climate...Carbon Capture, Utilization and Storage (CCUS) has been regarded as an indispensable, strategic and pressing technology to reduce anthropogenic carbon dioxide emissions, and mitigate the severe consequences of climate change. Its utilization and storage play important roles in this system and they can be applied for oceanic and underground geological sequestration especially for the oil gas reservoir that needs to improve recovery. For the carbon dioxide flooding process, the crude oil displacement generally shows a better performance with the increase of the pressure. However, carbon disposal is always complex. It could encounter organic solid phase precipitation and deposition in near miscibility environment. The law of multiphase and multicomponent diversification in the whole processes is still poorly understood. We thus used the method of slim tube to get dynamic data during the process. Indeed, the interval of near minimum miscibility pressure was determined. Analysis results of injectivity index and productivity index show that the reservoir blockage primarily appears as the displacement pressure is higher than the near minimum miscibility lower limit pressure and plays an important role in the production capacity. Extortionate or low pressure is not conducive to carbon dioxide displacement.展开更多
Better dealing with carbon issues can support the management of current greenhouse gas emissions while achieving energy economic diversification and energy security. Carbon dioxide displacement has become the most ack...Better dealing with carbon issues can support the management of current greenhouse gas emissions while achieving energy economic diversification and energy security. Carbon dioxide displacement has become the most acknowledged and practical method in enhanced oil recovery system. This is because of its oil sweep efficiency and ability to reduce the level of greenhouse gas emission. Nevertheless, it would lead to the organic solid phase deposition, which causes the changes of the wettability and the damages of wellbores and reservoirs. In this study, we used slim tube test and component test to research the dynamic characteristics of displacement process. In addition, the mechanism of porous media blockage was also investigated. Results show that when the displacement pressure closed to the minimum miscibility pressure, reservoir blockage in pore throat could happen. Component test characterizes that during near miscible displacement process, the components of oil sample varied obviously, the variation range of peak component carbon marks fluctuated strongly. Crude oil component differentiation could happen after carbon dioxide fully contacted with oil. Besides, the rapid extraction mechanism of aromatic hydrocarbons played a significant role in this process under such condition. The reason is that the solubility of saturated hydrocarbons to asphaltene and non-hydrocarbons is obviously weaker than aromatic hydrocarbons. Controlling the pressure is considered as an important link to prevent the occurrence of blocking in the carbon dioxide multiphase and multicomponent displacement process.展开更多
Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the re...Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the reaction temperature and the added amount of initiator of the PVAc polymerization are discussed.In addition,the phase behavior of the prepared PVAc in pressured CO2 is determined via the cloud point method.The results indicate that the cloud point of PVAc increases with the increase in the molecular weight,the PVAc concentration,and the temperature.The cloud point pressures for the PVAc mass concentration of 0.12%with the molecular weight of 1 550,2 120,and 2 960 g/mol are 13.48,13.83 and 15.43 MPa,respectively,at the temperature of 35℃.It reveals that the solubility of PVAc in ScCO2 at relatively low pressure is remarkably limited.展开更多
The large prevalence of respiratory acid-base disordersoverlapping metabolic acidosis in hemodialysis popu-lation should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with...The large prevalence of respiratory acid-base disordersoverlapping metabolic acidosis in hemodialysis popu-lation should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the flter reenters arterial needle.展开更多
Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid w...Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid with the high specific heat of supercritical pressure carbon dioxide and the mechanism of the heat transfer enhancement led by the high specific heat are analyzed.For a given nozzle diameter,the effects of the geometric parameters of a multi-layer cold plate such as the relative nozzle-to-plate distance,relative plate thickness,and relative upper fluid thickness on the average heat transfer coefficient are studied.The results show that the target surface is cooled effectively with supercritical pressure carbon dioxide jet impingement cooling.When the radial distance is less than 6 mm,the maximum wall temperature is 368 K,which is 30 K lower than the maximum junction temperature for a silicon-based insulated gate bipolar transistor,a typical electronic power device.There is a pseudocritical fluid layer near the target surface,where specific heat reaches above 34 kJ/(kg·K)locally.The drastic rise of the specific heat leads to obvious heat transfer enhancement.Within a certain range,the local heat transfer coefficient and the specific heat are linearly correlated and Stanton number remains constant over this range.The heat transfer coefficient is at a maximum when the relative nozzle-to-plate distance is 1.As the relative plate thickness increases from 0.5 to 3.5 or the relative upper fluid thickness increases from 0.5 to 2.5,the average heat transfer coefficient decreases monotonically.展开更多
Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle wave...Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle waves and particle aggregates exists along bed height.The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization.The existence time fractions and frequencies of particle aggregates are predicted along axial direction.The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds.Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide ve-locities.The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.展开更多
AIM: To elucidate the safety of percutaneous endoscopic gastrostomy(PEG) under steady pressure automatically controlled endoscopy(SPACE) using carbon dioxide(CO_2).METHODS: Nine patients underwent PEG with a modified ...AIM: To elucidate the safety of percutaneous endoscopic gastrostomy(PEG) under steady pressure automatically controlled endoscopy(SPACE) using carbon dioxide(CO_2).METHODS: Nine patients underwent PEG with a modified introducer method under conscious sedation. A T-tube was attached to the channel of an endoscope connected to an automatic surgical insufflator. The stomach was inflated under the SPACE system. The intragastric pressure was kept between 4-8 mmH g with a flow of CO_2 at 35 L/min. Median procedure time, intragastric pressure, median systolic blood pressure, partial pressure of CO_2, abdominal girth before and immediately after PEG, and free gas and small intestinal gas on abdominal X-ray before and after PEG were recorded. RESULTS: PEG was completed under stable pneumostomach in all patients, with a median procedural time of 22 min. Median intragastric pressure was 6.9 mmH g and median arterial CO_2 pressure before and after PEG was 42.1 and 45.5 Torr(NS). The median abdominal girth before and after PEG was 68.1 and 69.6 cm(NS). A mild free gas image after PEG was observed in two patients, and faint abdominal gas in the downstream bowel was documented in two patients.CONCLUSION: SPACE might enable standardized pneumostomach and modified introducer procedure of PEG.展开更多
文摘The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.
基金supported in part by grants from the National Natural Science Foundation of China(30700303)the National Clinical Key Subject Construction Project
文摘BACKGROUND: Partial pressure of end-tidal carbon dioxide(PETCO2) has been used to monitor the effectiveness of precordial compression(PC) and regarded as a prognostic value of outcomes in cardiopulmonary resuscitation(CPR). This study was to investigate changes of PETCO2 during CPR in rats with ventricular fi brillation(VF) versus asphyxial cardiac arrest.METHODS: Sixty-two male Sprague-Dawley(SD) rats were randomly divided into an asphyxial group(n=32) and a VF group(n=30). PETCO2 was measured during CPR from a 6-minute period of VF or asphyxial cardiac arrest.RESULTS: The initial values of PETCO2 immediately after PC in the VF group were signifi cantly lower than those in the asphyxial group(12.8±4.87 mmHg vs. 49.2±8.13 mmHg, P=0.000). In the VF group, the values of PETCO2 after 6 minutes of PC were significantly higher in rats with return of spontaneous circulation(ROSC), compared with those in rats without ROSC(16.5±3.07 mmHg vs. 13.2±2.62 mmHg, P=0.004). In the asphyxial group, the values of PETCO2 after 2 minutes of PC in rats with ROSC were signifi cantly higher than those in rats without ROSC(20.8±3.24 mmHg vs. 13.9±1.50 mmHg, P=0.000). Receiver operator characteristic(ROC) curves of PETCO2 showed signifi cant sensitivity and specifi city for predicting ROSC in VF versus asphyxial cardiac arrest.CONCLUSIONS: The initial values of PETCO2 immediately after CPR may be helpful in differentiating the causes of cardiac arrest. Changes of PETCO2 during CPR can predict outcomes of CPR.
基金This research was supported by the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX1-SW-01-15) and (KZCX1- SW-12)
文摘To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake,Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4(mean±standard deviation)μatm (latm=1.013 25×10^5pa), 416.3±217.0μatm, 576.5±758.8μatm, 304.2±9.43.5μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m^2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (--0.58±12.9mmol/m^2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×10^4 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively.
文摘The purpose of this study was to investigate the effect of nonadrenergic agents on cardiopulmonary resuscitation (CPR) and end-tidal CO2(ETCO2)during CPR in a rodent model. Our results suggested that: 1) coronary perfusion pressure (CPP) after drugs infusion was increased significantly by methoxamine, arginine vasopresin (AVP) and angiotension- Ⅱ(ANG- Ⅱ), but not by endothelin-1 (ET-1): 2) ETCO2 prior to defibrillation was decreased significantly by a pure a1 adrenergic agents,methoxamine and were increased significantly by non-adrenergic agents, ANG-Ⅱ and ET-1 during rodent CPR;3) a significant positive correlation between ETCO2 and CPP was observed in AVP group, suggesting that AVP have little effect on pulmonary circulation; and 4) methoxamine, AVP and ANG-Ⅱ have similar effect on resuscitability during rodent CPR.
文摘Background: We investigated the differences between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide (P(a-ET)CO2) with respect to the Broca-Katsura index (BKI), which is an obesity index, in obese patients during general anesthesia. Materials and Methods: From January 2003 to December 2013, we studied 601 patients aged 16 years old or over undergoing general anesthesia. Patients had American Society of Anesthesiology physical status I and II and we reviewed their anesthetic charts. The P(a-ET)CO2 with respect to the BKI divided patients into two groups: 16 to 2 values between the two groups. Results: In patients aged 16 to 2 was 2.2 ± 3.1 mmHg at BKI 2 was 3.2 ± 4.1 mmHg at BKI 2 tends to increase in obese patients during general anesthesia with increasing BKI in patients aged 16 to < 65 years old.
基金funded by the National Natural Science Foundation of China(Grant Nos.42141009,41825018,41888101 and 41902289)the Key Research Program of the Institute of Geology and Geophysics,CAS(Grant No.IGGCAS-202201)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)。
文摘Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimentary rocks fractured by ScCO_(2).The breakdown pressure,fracture parameters,mineral composition,bedding plane angle and permeability are discussed.We also compare the differences between sedimentary rock and granite fractured by ScCO_(2),ultimately noting problems and suggesting solutions and strategies for the future.The analysis found that the breakdown pressure of ScCO_(2)was reduced 6.52%–52.31%compared with that of using water.ScCO_(2)tends to produce a complex fracture morphology with significantly higher permeability.When compared with water,the fracture aperture of ScCO_(2)was decreased by 4.10%–72.33%,the tortuosity of ScCO_(2)was increased by 5.41%–70.98%and the fractal dimension of ScCO_(2)was increased by 4.55%–8.41%.The breakdown pressure of sandstone is more sensitive to the nature of the fracturing fluid,but fracture aperture is less sensitive to fracturing fluid than for shale and coal.Compared with granite,the tortuosity of sedimentary rock is more sensitive to the fracturing fluid and the fracture fractal dimension is less sensitive to the fracturing fluid.Existing research shows that ScCO_(2)has the advantages of low breakdown pressure,good fracture creation and environmental protection.It is recommended that research be conducted in terms of sample terms,experimental conditions,effectiveness evaluation and theoretical derivation in order to promote the application of ScCO_(2)reformed reservoirs in the future.
文摘In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have been measured in a fixed-bed, and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained. A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics, using the Langmuir equation to describe the adsorption equilibrium isotherm. The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied. The experimental results were compared with the ones predicted by the model adapted to a PSA system. Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle. These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.
基金the National Natural Science Foundation of China(Grant No.41274111)the Shenhua Group(Grant No.CSCLC-03-JS-2014-08)the National Department Public Benefit Research Foundation of MLR,China(Grant No.201211063-4-1)
文摘Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project.
基金Science and Technology Bureau of Shapingba District,Chongqing,China,No.JCD202041and Science and Technology Bureau of Chongqing,China,No.CSTC2019JXJL130029.
文摘BACKGROUND Endoscopic thyroidectomy has obvious advantages over conventional surgical techniques in terms of postoperative cosmetic outcome.Although the incidence of carbon dioxide embolism(CDE)during endoscopic thyroidectomy is very low,it is potentially fatal.The clinical manifestations of CDE vary,and more attention should be paid to this disorder.CASE SUMMARY A 27-year-old man was scheduled for thyroidectomy by the transoral vestibular approach.The patient had no other diseases or surgical history.During the operation,he developed a CDE following inadvertent injury of the anterior jugular vein.The clinical manifestation in this patient was a transient sharp rise in end-tidal carbon dioxide,and his remaining vital signs were stable.In addition,loud coarse systolic and diastolic murmurs were heard over the precordium.The patient was discharged on day 4 after surgery without complications.CONCLUSION A transient sharp rise in end-tidal carbon dioxide is considered a helpful early sign of CDE during endoscopic thyroidectomy.
基金The research was partially supported by the Major Project of Inner Mongolia Science and Technology(Grant No.2021ZD0034)the National Natural Science Foundation of China(Grant Nos.41872210 and 41274111)The equipment and methodology we have developed for this research have applied for a national invention patent(ZL 202110708668.1).
文摘It is important to understand the process of multiphase carbon dioxide(CO_(2))leakage in faults for the risk assessment of carbon capture and storage(CCS).To quantitatively characterize the CO_(2)leakage process in the fault,pressure sensors,fiber Bragg grating(FBG)temperature and strain sensors were simultaneously used to monitor CO_(2)leakage in the fault.Ten experiments were carried out,including five groups of gaseous CO_(2)leakage tests with initial pressures of 1-5 MPa and five groups of liquid CO_(2)leakage tests with initial pressures of 6-10 MPa.The results indicate that when liquid CO_(2)leaked with an initial pressure of 7-10 MPa,the pressure and temperature of CO_(2)dropped rapidly in the first few seconds and then remained unchanged.The behavior that CO_(2)continues to leak while maintaining temperature and pressure unchanged is defined as“temporary pseudo-sealing(TPS)”behavior,which continues for the first 1/3 of the leakage period.However,this TPS behavior did not occur in gaseous CO_(2)leakage.If only the pressure and temperature data were used to evaluate whether CO_(2)leakage occurred,we would misjudge the risk of leakage in CCS projects during the TPS period.The causes and conditions of TPS behavior were further studied experimentally.The results show that:(1)TPS behavior is caused by the phase transition energy generated when liquid CO_(2)leaks.(2)The condition for TPS behavior is a small leak aperture(0.2 mm).Only a small leakage rate can make the phase transition energy and pressure change from a dynamic equilibrium,and(3)The compression zone caused by the Bernoulli effect and fault“barrier”could reduce the CO_(2)leakage rate and further promote the occurrence of TPS behavior.This study provides technical and theoretical support for the quantitative characterization of the CO_(2)leakage process in faults of CCS projects.
文摘This paper aims at using of an approach integrating the fuzzy logic strategy for hypoxemic hypoxia tissue blood carbon dioxide human optimal control problem. To test the efficiency of this strategy, the authors propose a numerical comparison with the direct method by taking the values of determinant parameters of cardiovascular-respiratory system for a 30 years old woman in jogging as her regular physical activity. The results are in good agreement with experimental data.
文摘Complexation combined with supercritical fluid extraction was used to extract Cu2+ in this study. The effects of pressure, temperature, volume of CO2 on the efficiency of extraction were systematically investigated. At the optimum condition a 57.32% recovery was achieved. Addition of suitable amount of methanol (v/v = 5%) to the supercritical CO2 can increase in the extraction of Cu2+ (72.69%, RSD = 2.12%, n = 3). And the recovery can further increase in the presence of non-ionic surfactant Triton X-100 because of its function of solubilization. Surfactant was first used in the extraction of metal ions in the present study, and the results are satisfied (90.52%, RSD = 2.20%, n = 3).
文摘Supercritical carbon dioxide(SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homogeneous hydroformylation of propylene in supercritical carbon dioxide( SC-CO2 ) , which is an example of this kind of application of carbon dioxide. The determination for the critical parameters of carbon dioxide + butyraldehyde mixtures is necessary for this reaction design which is the focus of the present paper. The critical parameters of the binary systems were determined via the static visual method at a constant volume with the molar fraction of butyraldehyde ranging from 1.0% to 2. 2% and the pressure ranging from 5 to 10 MPa. The experimental results show that the critical pressure and temperature increased with increasing the molar fraction of butyraldehyde. The bubble(dew) temperatures and the bubble (dew) pressures for the binary systems were also determined experimentally. The p-T Figures at different compositions of the binary systems were described. In addition, the critical compressibility factors Zc of the binary systems at different concentrations of n-butyraldehyde were calculated. It was found that the critical compressibility factor values of the binary systems decreased with increasing the molar fraction of n-butyraldehyde in the experimental range.
文摘Carbon Capture, Utilization and Storage (CCUS) has been regarded as an indispensable, strategic and pressing technology to reduce anthropogenic carbon dioxide emissions, and mitigate the severe consequences of climate change. Its utilization and storage play important roles in this system and they can be applied for oceanic and underground geological sequestration especially for the oil gas reservoir that needs to improve recovery. For the carbon dioxide flooding process, the crude oil displacement generally shows a better performance with the increase of the pressure. However, carbon disposal is always complex. It could encounter organic solid phase precipitation and deposition in near miscibility environment. The law of multiphase and multicomponent diversification in the whole processes is still poorly understood. We thus used the method of slim tube to get dynamic data during the process. Indeed, the interval of near minimum miscibility pressure was determined. Analysis results of injectivity index and productivity index show that the reservoir blockage primarily appears as the displacement pressure is higher than the near minimum miscibility lower limit pressure and plays an important role in the production capacity. Extortionate or low pressure is not conducive to carbon dioxide displacement.
文摘Better dealing with carbon issues can support the management of current greenhouse gas emissions while achieving energy economic diversification and energy security. Carbon dioxide displacement has become the most acknowledged and practical method in enhanced oil recovery system. This is because of its oil sweep efficiency and ability to reduce the level of greenhouse gas emission. Nevertheless, it would lead to the organic solid phase deposition, which causes the changes of the wettability and the damages of wellbores and reservoirs. In this study, we used slim tube test and component test to research the dynamic characteristics of displacement process. In addition, the mechanism of porous media blockage was also investigated. Results show that when the displacement pressure closed to the minimum miscibility pressure, reservoir blockage in pore throat could happen. Component test characterizes that during near miscible displacement process, the components of oil sample varied obviously, the variation range of peak component carbon marks fluctuated strongly. Crude oil component differentiation could happen after carbon dioxide fully contacted with oil. Besides, the rapid extraction mechanism of aromatic hydrocarbons played a significant role in this process under such condition. The reason is that the solubility of saturated hydrocarbons to asphaltene and non-hydrocarbons is obviously weaker than aromatic hydrocarbons. Controlling the pressure is considered as an important link to prevent the occurrence of blocking in the carbon dioxide multiphase and multicomponent displacement process.
基金The Natural Science Foundation of Jiangsu Province(No.BK20130602)the Applied Basic Research Program of Suzhou(No.SYG201836)the Project of the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the reaction temperature and the added amount of initiator of the PVAc polymerization are discussed.In addition,the phase behavior of the prepared PVAc in pressured CO2 is determined via the cloud point method.The results indicate that the cloud point of PVAc increases with the increase in the molecular weight,the PVAc concentration,and the temperature.The cloud point pressures for the PVAc mass concentration of 0.12%with the molecular weight of 1 550,2 120,and 2 960 g/mol are 13.48,13.83 and 15.43 MPa,respectively,at the temperature of 35℃.It reveals that the solubility of PVAc in ScCO2 at relatively low pressure is remarkably limited.
文摘The large prevalence of respiratory acid-base disordersoverlapping metabolic acidosis in hemodialysis popu-lation should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the flter reenters arterial needle.
基金supported by the Ministry of Science and Technology,the National Key Research and Development Program of China,under Grant No.2016YFE0201200。
文摘Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid with the high specific heat of supercritical pressure carbon dioxide and the mechanism of the heat transfer enhancement led by the high specific heat are analyzed.For a given nozzle diameter,the effects of the geometric parameters of a multi-layer cold plate such as the relative nozzle-to-plate distance,relative plate thickness,and relative upper fluid thickness on the average heat transfer coefficient are studied.The results show that the target surface is cooled effectively with supercritical pressure carbon dioxide jet impingement cooling.When the radial distance is less than 6 mm,the maximum wall temperature is 368 K,which is 30 K lower than the maximum junction temperature for a silicon-based insulated gate bipolar transistor,a typical electronic power device.There is a pseudocritical fluid layer near the target surface,where specific heat reaches above 34 kJ/(kg·K)locally.The drastic rise of the specific heat leads to obvious heat transfer enhancement.Within a certain range,the local heat transfer coefficient and the specific heat are linearly correlated and Stanton number remains constant over this range.The heat transfer coefficient is at a maximum when the relative nozzle-to-plate distance is 1.As the relative plate thickness increases from 0.5 to 3.5 or the relative upper fluid thickness increases from 0.5 to 2.5,the average heat transfer coefficient decreases monotonically.
基金funded by National Natural Science Foundation of China under the Grant No.51776059 and Key R&D Program of China Construction Second Engineering Bureau Co.Ltd.(Grant No.2021ZX180001).
文摘Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle waves and particle aggregates exists along bed height.The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization.The existence time fractions and frequencies of particle aggregates are predicted along axial direction.The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds.Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide ve-locities.The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.
文摘AIM: To elucidate the safety of percutaneous endoscopic gastrostomy(PEG) under steady pressure automatically controlled endoscopy(SPACE) using carbon dioxide(CO_2).METHODS: Nine patients underwent PEG with a modified introducer method under conscious sedation. A T-tube was attached to the channel of an endoscope connected to an automatic surgical insufflator. The stomach was inflated under the SPACE system. The intragastric pressure was kept between 4-8 mmH g with a flow of CO_2 at 35 L/min. Median procedure time, intragastric pressure, median systolic blood pressure, partial pressure of CO_2, abdominal girth before and immediately after PEG, and free gas and small intestinal gas on abdominal X-ray before and after PEG were recorded. RESULTS: PEG was completed under stable pneumostomach in all patients, with a median procedural time of 22 min. Median intragastric pressure was 6.9 mmH g and median arterial CO_2 pressure before and after PEG was 42.1 and 45.5 Torr(NS). The median abdominal girth before and after PEG was 68.1 and 69.6 cm(NS). A mild free gas image after PEG was observed in two patients, and faint abdominal gas in the downstream bowel was documented in two patients.CONCLUSION: SPACE might enable standardized pneumostomach and modified introducer procedure of PEG.