期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recorded recurrent deep reinforcement learning guidance laws for intercepting endoatmospheric maneuvering missiles
1
作者 Xiaoqi Qiu Peng Lai +1 位作者 Changsheng Gao Wuxing Jing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期457-470,共14页
This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u... This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws. 展开更多
关键词 endoatmospheric interception Missile guidance Reinforcement learning Markov decision process Recurrent neural networks
下载PDF
Improved differential geometric guidance commands for endoatmospheric interception of high-speed targets 被引量:22
2
作者 LI KeBo CHEN Lei TANG GuoJin 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第2期518-528,共11页
Pure proportional navigation(PPN) is suitable for endoatmospheric interceptions,for its commanded acceleration is perpendicular to interceptor velocity.However,if the target is much faster than the interceptor,the hom... Pure proportional navigation(PPN) is suitable for endoatmospheric interceptions,for its commanded acceleration is perpendicular to interceptor velocity.However,if the target is much faster than the interceptor,the homing performance of PPN will be degraded badly.True proportional navigation(TPN) does not have this problem,but its commanded acceleration is perpendicular to the line of sight(LOS),which is not suitable for endoatmospheric interceptions.The commanded acceleration of differential geometric guidance commands(DGGC) is perpendicular to the interceptor velocity,while the homing performance approximates the LOS referenced guidance laws(PPN series).Therefore,DGGC is suitable for endoatmospheric interception of high-speed targets.However,target maneuver information is essential for the construction of DGGC,and the guidance commands are complex and may be without robustness.Through the deep analysis of three-dimensional engagement,a new construction method of DGGC is proposed in this paper.The target maneuver information is not needed any more,and the robustness of DGGC is guaranteed,which makes the application of DGGC possible. 展开更多
关键词 differential geometric guidance commands endoatmospheric interception high-speed targets proportional navigation ROBUSTNESS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部