期刊文献+
共找到202篇文章
< 1 2 11 >
每页显示 20 50 100
Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders
1
作者 Nai-Yu Ke Tian-Yi Zhao +2 位作者 Wan-Rong Wang Yu-Tong Qian Chao Liu 《World Journal of Stem Cells》 SCIE 2023年第4期235-247,共13页
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re... Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications. 展开更多
关键词 neural stem/progenitor cell BRG1/BRM-associated factor complex SUBUNIT Proliferation DIFFERENTIATION neural developmental disorde
下载PDF
Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain 被引量:23
2
作者 Sun Ryu Seung-Hoon Lee +1 位作者 Seung U.Kim Byung-Woo Yoon 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期298-304,共7页
Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in ... Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2′-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen Neu N, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2′-deoxyuridine-positive ? anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke. 展开更多
关键词 nerve regeneration focal cerebral ischemia middle cerebral artery occlusion human neural stem cells TRANSPLANTATION differentiation infarct size behavioral analysis endogenous neurogenesis ANGIOGENESIS rats neural regeneration
下载PDF
Electroacupuncture promotes the proliferation of endogenous neural stem cells and oligodendrocytes in the injured spinal cord of adult rats 被引量:4
3
作者 Haiying Wu Min HU +5 位作者 Dekai Yuan Yunhui Wang Jing Wang Tao Li Chuanyun Qian Hualin YU 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第15期1138-1144,共7页
A contusive model of spinal cord injury at spinal segment T8-9 was established in rats. Huantiao (GB30) and Huatuojiaji (Ex-B05) were punctured with needles, and endogenous neural stem cells were labeled with 5-br... A contusive model of spinal cord injury at spinal segment T8-9 was established in rats. Huantiao (GB30) and Huatuojiaji (Ex-B05) were punctured with needles, and endogenous neural stem cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) and NG2. Double immunofluorescence staining showed that electroacupuncture markedly increased the numbers of BrdU+/NG2+cells at spinal cord tissue 15 mm away from the injury center in the rostral and caudal directions. The results suggest that electroacupuncture promotes the proliferation of endogenous neural stem cells and oligodendrocytes in rats with spinal cord injury. 展开更多
关键词 endogenous oligodendrocyte progenitor cells spinal cord injury ELECTROACUPUNCTURE PROLIFERATION REMYELINATION neural regeneration
下载PDF
Effects of recombinant adenovirus-mediated hypoxia-inducible factorlalpha gene on proliferation and differentiation of endogenous neural stem cells in rats following intracerebral hemorrhage
4
作者 Zhen Yu Li-Fen Chen +1 位作者 Ling Tang Chang-Lin Hu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2013年第10期762-767,共6页
Objective:To investigate the effects of adenovirus(Ad)-mediated hypoxia-inducible factor-1alpha(HIF-1α)gene on proliferation and differentiation of endogenous neural stem cells(NSCs)in rats following intracerebral he... Objective:To investigate the effects of adenovirus(Ad)-mediated hypoxia-inducible factor-1alpha(HIF-1α)gene on proliferation and differentiation of endogenous neural stem cells(NSCs)in rats following intracerebral hemorrhage(ICH)and the underlying mechanisms.Methods:A total of 120 specific pathogen-free,adult,male Sprague-Dawley rats were included in this study.After establishment of ICH models in rats,PBS,Ad,or Ad-HIF-1αwas administered via the ischemic ventricle.On the 1st,7th,14th,21st and 28th d after ICH,rat neurological deficits were scored,doublecortin(DCX)expression in the subventricular zone cells was detected by immunohistochemical staining,and 5-bromo-2'-deoxyuridine(Brdtl)-,BrdU/DCX-,and BrdU/glial fibrillary acidic prolein-posilive cells in the subventricular zone were counted using immumofluorescence method among PBS,Ad,and Ad-HIF-1αgroups.Results:On the 7th,14th,21st and 28th d after ICH,neurological deficit scores in the Ad-HIF-1αgroup were significantly lower than in the PBS and Ad groups(P<0.05).In the Ad-HIF-lαgroup,DCX expression was significantly increased on the 7th d,peaked on the 14th d,and then gradually decreased.In the Ad-HIF-1αgroup,BrdU-positive cells were significantly increased over time course,and significant difference in BrdU-positive cell counts was observed when compared with the PBS and Ad groups at each time point(P<0.01 or 0.05).On the 7th,14th,21st and 28th d after ICH,the number of DCX-,BrdU-,BrdU/DCX-,and BrdU/DCX-positive cells in the Ad-HIF-1αgroup was significantly greater than in the PBS and Ad groups(P<0.05).Conclusions:HIF-1αgene can promote the proliferation,migration and differentiation of endogenous neural stem cells after ICH,thereby contributing to neurofunctional recovery after ICH. 展开更多
关键词 Hypoxia-inducible factor-lalpha endogenous neural stem cells ADENOVIRUS INTRACEREBRAL HEMORRHAGE
下载PDF
Basic fibroblast growth factor increases the numbe of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice
5
作者 Weihui Huang Dawei Zang Yi Lu Ping Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期761-765,共5页
This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) receptors and production of endogenous neural stem cells in the SOD1 G93AG1H transgenic mouse model of amyotrophic lateral s... This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) receptors and production of endogenous neural stem cells in the SOD1 G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice. 展开更多
关键词 amino methyl isoxazole propionic acid receptor amyotrophic lateral sclerosis basic fibroblast growth factor endogenous neural stem cells
下载PDF
Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage 被引量:12
6
作者 Yue Yao Xiang-rong Zheng +4 位作者 Shan-shan Zhang Xia Wang Xiao-he Yu Jie-lu Tan Yu-jia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1456-1463,共8页
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling ... Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neo- natal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs. 展开更多
关键词 nerve regeneration vascular endothelial growth factor TRANSFECTION neural stem/progenitor cells TRANSPLANTATION hypoxic-ischemicbrain damage cerebral cortex animal model NEUROPROTECTION neural regeneration
下载PDF
Comparison of phenotypic markers and neural differentiation potential of multipotent adult progenitor cells and mesenchymal stem cells 被引量:10
7
作者 Saurabh Pratap Singh Naresh Kumar Tripathy Soniya Nityanand 《World Journal of Stem Cells》 SCIE CAS 2013年第2期53-60,共8页
AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were estab... AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were established in parallel from same samples of human bone marrow (n = 5). Both stem cell types were evaluated for expression of pluripotency markers including Oct-4 and Nanog by immunocytochemistry and reversetranscription polymerase chain reaction (RT-PCR) and expression of standard mesenchymal markers including CD14, CD34, CD44, CD45, CD73, CD90, CD105 andhuman leukocyte antigen (HLA)-ABC by flow cytometry. After treatment with neural induction medium both MAPC and MSC were evaluated for expression of neural proteins [neuronal filament-200 (NF-200) and glial fibrillar acidic protein (GFAP)] by immunocytochemistry and Western blotting and neural genes [NF-200, GFAP, Tau, microtubule-associated protein (MAP)-1B, MAP-2, neuron-specific enolase (NSE) and oligodendrocyte-1 (Olig-1)] by quantitative real-time-PCR. RESULTS: MAPC had small trigonal shaped while MSC had elongated spindle-shaped morphology. The MAPC expressed Oct-4 and Nanog both at gene and protein levels, whereas MSC were negative for these pluripotent markers. MAPC were negative for HLA-ABC while MSC had high expression of HLA-ABC. In addition, MAPC as compared to MSC had significantly lower expression of CD44 (36.56% ± 1.92% vs 98.23% ± 0.51%), CD73 (15.11% ± 2.24% vs 98.53% ± 2.22%) and CD105 (13.81% ± 3.82%vs 95.12% ± 5.65%) (P < 0.001, for all) MAPC cultures compared to MSC cultures treated with neural induction medium had significantly higher fold change expression of NF-200 (0.64), GFAP (0.52), Tau (0.59), MAP-2 (0.72), Olig-1 (0.18) and NSE (0.29) proteins (P < 0.01 for Olig-1 and P < 0.001 for rest) as well as higher fold change expression of genes of NF-200 (1.34),GFAP (1.12),Tau (1.08),MAP-1B (0.92), MAP-2 (1.14) andNSE (0.4) (P < 0.001 for all). CONCLUSION: MAPC can be differentially characterized from MSC as Oct-4 and Nanog positive stem cells with no expression of HLA-ABC and low expression of mesenchymal markers CD44, CD73 and CD105 and when compared to MSC they possess greater predilection for differentiation into neuro-ectodermal lineage. 展开更多
关键词 Bone marrow HUMAN MULTIPOTENT adult progenitor cells HUMAN mesenchymal stem cells PHENOTYPIC MARKERS neural differentiation
下载PDF
Propofol and remifentanil at moderate and high concentrations affect proliferation and differentiation of neural stem/progenitor cells 被引量:7
8
作者 Qing Li Jiang Lu Xianyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期2002-2007,共6页
Propofol and remifentanil alter intracellular Ca^2+ concentration ([Ca^2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, wheth... Propofol and remifentanil alter intracellular Ca^2+ concentration ([Ca^2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, whether this process affects neural stem/progenitor cell proliferation and differenti-ation remains unknown. In the present study, we applied propofol and remifentanil, alone or in combination, at low, moderate or high concentrations (1, 2–2.5 and 4–5 times the clinically effective blood drug concentration), to neural stem/progenitor cells from the hippocampi of newborn rat pups. Low concentrations of propofol, remifentanil or both had no noticeable effect on cell proliferation or differentiation; however, moderate and high concentrations of propofol and/or remifentanil markedly suppressed neural stem/progenitor cell proliferation and differen-tiation, and induced a decrease in [Ca^2+]i during the initial stage of neural stem/progenitor cell differentiation. We therefore propose that propofol and remifentanil interfere with the prolifer-ation and differentiation of neural stem/progenitor cells by altering [Ca^2+]i. Our ifndings suggest that propofol and/or remifentanil should be used with caution in pediatric anesthesia. 展开更多
关键词 nerve regeneration PROPOFOL REMIFENTANIL neural stem cells neural progenitor cells PROLIFERATION apoptosis DIFFERENTIATION [Ca^2+]i neural regeneration
下载PDF
Effects of leukemia inhibitory factor on endogenous neural stem cell proliferation and glycoprotein-130 expression in a mouse model of cerebral infarction 被引量:2
9
作者 Yufeng Lin Yadan Li Dawei Zang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1452-1456,共5页
Leukemia inhibitory factor (LIF) has been shown to promote proliferation of endogenous neural stem cells. In this study, we treated mice with cerebral infarction using LIF to investigate whether the LIF receptor sub... Leukemia inhibitory factor (LIF) has been shown to promote proliferation of endogenous neural stem cells. In this study, we treated mice with cerebral infarction using LIF to investigate whether the LIF receptor subunit glycoprotein (gp)130 is involved in neuroprotection. After LIF treatment, the motor function of model mice was significantly improved. Immunofluorescence histochemistry showed increased numbers of endogenous neural stem cells surrounding the infarct foci. Western blot analysis revealed that gp130 expression was significantly decreased surrounding the infarcted foci. Results demonstrated that LIF promoted the proliferation of endogenous neural stem cells by inhibiting gp130 protein expression. 展开更多
关键词 Leukemia inhibitory factor endogenous neural stem cell glycoprotein-130 cerebral infarction PROLIFERATION neural regeneration
下载PDF
Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone 被引量:2
10
作者 Giancarlo Poiana Roberta Gioia +3 位作者 Serena Sineri Silvia Cardarelli Giuseppe Lupo Emanuele Cacci 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第10期1773-1783,共11页
In rodents,well characterized neurogenic niches of the adult brain,such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus,support the maintenance of neural/stem progenito... In rodents,well characterized neurogenic niches of the adult brain,such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus,support the maintenance of neural/stem progenitor cells(NSPCs)and the production of new neurons throughout the lifespan.The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation.At the same time,it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli.A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging,injury or disease.At the core of the molecular mechanisms regulating neurogenesis,several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues.Here,we focus on REST,Egr1 and Dbx2 and their roles in adult neurogenesis,especially in the subventricular zone.We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche.We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain.Finally,we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis. 展开更多
关键词 adult neurogenesis aging extracellular signaling gene regulation neural stem/progenitor cells transcription factors
下载PDF
Exosomes derived from human induced pluripotent stem cell-derived neural progenitor cells protect neuronal function under ischemic conditions 被引量:2
11
作者 Wen-Yu Li Qiong-Bin Zhu +3 位作者 Lu-Ya Jin Yi Yang Xiao-Yan Xu Xing-Yue Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第10期2064-2070,共7页
Compared with other stem cells,human induced pluripotent stem cells-derived neural progenitor cells(iPSC-NPCs)are more similar to cortical neurons in morphology and immunohistochemistry.Thus,they have greater potentia... Compared with other stem cells,human induced pluripotent stem cells-derived neural progenitor cells(iPSC-NPCs)are more similar to cortical neurons in morphology and immunohistochemistry.Thus,they have greater potential for promoting the survival and growth of neurons and alleviating the proliferation of astrocytes.Transplantation of stem cell exosomes and stem cells themselves have both been shown to effectively repair nerve injury.However,there is no study on the protective effects of exosomes derived from iPSC-NPCs on oxygen and glucose deprived neurons.In this study,we established an oxygen-glucose deprivation model in embryonic cortical neurons of the rat by culturing the neurons in an atmosphere of 95%N2 and 5%CO2 for 1 hour and then treated them with iPSC-NPC-derived exosomes for 30 minutes.Our results showed that iPSC-NPC-derived exosomes increased the survival of oxygen-and glucose-deprived neurons and the level of brain-derived neurotrophic factor in the culture medium.Additionally,it attenuated oxygen and glucose deprivation-induced changes in the expression of the PTEN/AKT signaling pathway as well as synaptic plasticity-related proteins in the neurons.Further,it increased the length of the longest neurite in the oxygen-and glucose-deprived neurons.These findings validate the hypothesis that exosomes from iPSCNPCs exhibit a neuroprotective effect on oxygen-and glucose-deprived neurons by regulating the PTEN/AKT signaling pathway and neurite outgrowth.This study was approved by the Animal Ethics Committee of Sir Run Run Shaw Hospital,School of Medicine,Zhejiang University,China(approval No.SRRSH20191010)on October 10,2019. 展开更多
关键词 AKT cortical neurons EXOSOME ISCHEMIA neural progenitor cells neuronal protection oxygen and glucose deprivation pluripotent stem cells PTEN signaling pathway
下载PDF
Ultrastructure of human neural stem/progenitor cells and neurospheres 被引量:1
12
作者 Yaodong Zhao Tianyi Zhang +4 位作者 Qiang Huang Aidong Wang Jun Dong Qing Lan Zhenghong Qin 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第5期365-370,共6页
BACKGROUND: Biological and morphological characteristics of neural stem/progenitor cells (NSPCs) have been widely investigated. OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospher... BACKGROUND: Biological and morphological characteristics of neural stem/progenitor cells (NSPCs) have been widely investigated. OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospheres cultivated in vitro using electron microscopy. DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Brain Tumor Laboratory of Soochow University, and Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University between August 2007 and April 2008. MATERIALS: Human fetal brain tissue was obtained from an 8-week-old aborted fetus; serum-free Dulbecco's modified Eagle's medium/F12 culture medium was provided by Gibco, USA; scanning electron microscope was provided by Hitachi Instruments, Japan; transmission electron microscope was provided by JEOL, Japan. METHODS: NSPCs were isolated from human fetal brain tissue and cultivated in serum-free Dulbecco's modified Eagle's medium/F12 culture medium. Cells were passaged every 5-7 days. After three passages, NSPCs were harvested and used for ultrastructural examination. MAIN OUTCOME MEASURES: Ultrastructural examination of human NSPCs and adjacent cells in neurospheres. RESULTS: Individual NSPCs were visible as spherical morphologies with rough surfaces under scanning electron microscope. Generally, they had large nuclei and little cytoplasm. Nuclei were frequently globular with large amounts of euchromatin and a small quantity of heterochromatin, and most NSPCs had only one nucleolus. The Golgi apparatus and endoplasmic reticulum were underdeveloped; however, autophagosomes were clearly visible. The neurospheres were made up of NSPCs and non-fixiform material inside. Between adjacent cells and at the cytoplasmic surface of apposed plasma membranes, there were vesicle-like structures. Some membrane boundaries with high permeabilities were observed between some contiguous NSPCs in neurospheres, possibly attributable to plasmalemmal fusion between adjacent cells. CONCLUSION: A large number of autophagosomes were observed in NSPCs and gap junctions were visible between adjacent NSPCs. 展开更多
关键词 neural stem/progenitor cells NEUROSPHERE ULTRASTRUCTURE AUTOPHAGOSOME cell junction
下载PDF
Effect of valproic acid on endogenous neural stem cell proliferation in a rat model of spinal cord injury 被引量:1
13
作者 Guoxin Nan Ming Li +3 位作者 Weihong Liao Jiaqiang Qin Yujiang Cao Youqiong Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第7期513-517,共5页
BACKGROUND: Valproic acid has been reported to decrease apoptosis, promote neuronal differentiation of brain-derived neural stem cells, and inhibit glial differentiation of brain-derived neural stem cells. OBJECTIVE... BACKGROUND: Valproic acid has been reported to decrease apoptosis, promote neuronal differentiation of brain-derived neural stem cells, and inhibit glial differentiation of brain-derived neural stem cells. OBJECTIVE: To investigate the effects of valproic acid on proliferation of endogenous neural stem cells in a rat model of spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, neuropathological study was performed at Key Laboratory of Trauma, Buming, and Combined Injury, Research Institute of Surgery, Daping Hospital, the Third Military Medical University of Chinese PLA between November 2005 and February 2007. MATERIALS: A total of 45 adult, Wistar rats were randomly divided into sham surgery (n = 5), injury (n = 20), and valproic acid (n = 20) groups. Valproic acid was provided by Sigma, USA. METHODS: Injury was induced to the T10 segment in the injury and valproic acid groups using the metal weight-dropping method. The spinal cord was exposed without contusion in the sham surgery group. Rats in the valproic acid group were intraperitoneally injected with 150 mg/kg valproic acid every 12 hours (twice in total).MAIN OUTCOME MEASURES: Nestin expression (5 mm from injured center) was detected using immunohistochemistry at 1,3 days, 1, 4, and 8 weeks post-injury. RESULTS: Low expression of nestin was observed in the cytoplasm, but rarely in the white matter of the spinal cord in the sham surgery group. In the injury group, nestin expression was observed in the ependyma and pia mater one day after injury, and expression reached a peak at 1 week (P 〈 0.05). Expression was primarily observed in the ependymal cells, which expanded towards the white and gray matter of the spinal cord. Nestin expression rapidly decreased by 4 weeks post-injury, and had almost completely disappeared by 8 weeks. At 24 hours after spinal cord injury, there was no significant difference in nestin expression between the valproic acid and injury groups. At 1 week, there was a significant increase in the number of nestin-positive cells surrounding the central canal in valproic acid group compared with the injury group (P 〈 0.05). Expression reached a peak by 4 weeks, and it was still present at 8 weeks. CONCLUSION: Valproic acid promoted endogenous neural stem cell proliferation following spinal cord injury in rats. 展开更多
关键词 spinal cord injury NESTIN endogenous neural stem cells valproic acid rats
下载PDF
Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke 被引量:2
14
作者 Hongmei Duan Shulun Li +11 位作者 Peng Hao Fei Hao Wen Zhao Yudan Gao Hui Qiao Yiming Gu Yang Lv Xinjie Bao Kin Chiu Kwok-Fai So Zhaoyang Yang Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期409-415,共7页
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv... Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke. 展开更多
关键词 adult endogenous neurogenesis ANGIOGENESIS basic fibroblast growth factor-chitosan gel CHITOSAN functional recovery ischemic stroke neural stem cell newborn neuron
下载PDF
ISOLATION AND EXPANSION OF HUMAN EMBRYONIC NEURAL STEM/PROGENITOR CELLS IN VITRO
15
作者 Lu Haixia,Song Tusheng,Zhai Wei 1,Li Minjie,Kang Qianyan,Liu Yong The Research Center of Neuroscience in Xi’an Jiaotong University Medical School, Xi’an 710061$$$$ 《中国现代医学杂志》 CAS CSCD 2002年第23期15-19,共5页
Objective:To isolate, culture and identify human embryonic neural stem cells and to establish a practical passaging method.Method:The cerebral cortex cells were isolated from aborted embryos (11~13 weeks) by mechanic... Objective:To isolate, culture and identify human embryonic neural stem cells and to establish a practical passaging method.Method:The cerebral cortex cells were isolated from aborted embryos (11~13 weeks) by mechanical dissociation,and cultured in DMEM/F12 culture medium supplemented with N2 and growth factors for proliferation. Upon passaging, the neurospheres were pipetted gentlely to separate them into several cell masses and then grown in growth medium. The cells were grown in DMEM/F12 medium with serum (without growth factors) to induce differentiation. The stem cell, neuron, astrocyte and oligodendrocyte were identified by immunocytochemistry with antibodies to vimentin, MAP 2, GFAP and GalC, respectively. Results:The primary cells grew together and formed neurospheres at 5 th ~7 th day. They were all vimentin positive and could be passaged for at least 8 passages. After passaging, the cell masses grew up and formed new neurospheres rapidly.These cells could differentiated into MAP 2(+),GFAP(+) or GalC(+) cells.Conclusion:The neural stem cells from human embryonic cerebral cortex have the capacity of proliferation and multi-differentiation in vitro. The passaging methods we used in this experiment were practical and convenient. 展开更多
关键词 人胚神经 干细胞/祖细胞 分离 体外增殖
下载PDF
The advantages of multi-level omics research on stem cell-based therapies for ischemic stroke
16
作者 Yiqing Wang Chuheng Chang +2 位作者 Renzhi Wang Xiaoguang Li Xinjie Bao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1998-2003,共6页
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Altho... Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke. 展开更多
关键词 ischemic stroke mesenchymal stem cells metabolomics multilevel omics neural stem/progenitor cells NEUROINFLAMMATION PATHOPHYSIOLOGY proteomics stem cell therapy TRANSCRIPTOMES
下载PDF
Establishment of human cerebral organoid systems to model early neural development and assess the central neurotoxicity of environmental toxins
17
作者 Daiyu Hu Yuanqing Cao +6 位作者 Chenglin Cai Guangming Wang Min Zhou Luying Peng Yantao Fan Qiong Lai Zhengliang Gao 《Neural Regeneration Research》 SCIE CAS 2025年第1期242-252,共11页
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li... Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies. 展开更多
关键词 cadmium cell death cell proliferation cortical development environmental toxins neural progenitor cells NEUROGENESIS NEUROTOXICOLOGY ORGANOIDS stem cells
下载PDF
Wharton's jelly mesenchymal stem cells differentiate into retinal progenitor cells 被引量:7
18
作者 Ying Hu Jun Liang +4 位作者 Hongping Cui Xinmei Wang Hua Rong Bin Shao Hao Cui 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第19期1783-1792,共10页
Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, ... Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, a Wnt/13 catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that after induction, the spindleshaped or fibroblastlike Wharton's jelly mesenchymal stem cells changed into bulbous cells with numerous processes. Immunofluorescent cytochemical stain ing and reversetranscription PCR showed positive expression of retinal progenitor cell markers, Pax6 and Rx, as well as weakly downregulated nestin expression. These results demonstrate that Wharton's jelly mesenchymal stem cells are capable of differentiating into retinal progenitor cells in vitro. 展开更多
关键词 neural regeneration stem cells Wharton's jelly mesenchymal stem cells microenvironment induc-tion reagent induction retinal progenitor cells nerve cells retinal disease grants-supported paper NEUROREGENERATION
下载PDF
Insights of stem cell-based endogenous repair of intervertebral disc degeneration 被引量:8
19
作者 Yang Liu Yan Li +5 位作者 Li-Ping Nan Feng Wang Shi-Feng Zhou Xin-Min Feng Hao Liu Liang Zhang 《World Journal of Stem Cells》 SCIE CAS 2020年第4期266-276,共11页
Low back pain has become more prevalent in recent years,causing enormous economic burden for society and government.Common therapies used in clinics including conservative treatment and surgery can only relieve pain.S... Low back pain has become more prevalent in recent years,causing enormous economic burden for society and government.Common therapies used in clinics including conservative treatment and surgery can only relieve pain.Subsequent cell-based treatment such as mesenchymal stem cell transplantation poses problems such as short duration of therapeutic effect and tumorigenesis.Recently,the discovery and identification of stem cell niche and stem/progenitor cells in intervertebral disc bring increased attention to endogenous repair strategy.Therefore,we review the studies involving endogenous repair strategy and present the characteristics and current status of this treatment.Meanwhile,we also discuss the strategy and perspective of endogenous repair strategy in future. 展开更多
关键词 Low back pain INTERVERTEBRAL disc degeneration stem cell niche stem/progenitor cell endogenous REPAIR strategy stem cell treatment
下载PDF
Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro 被引量:4
20
作者 Jiang Lu Kehuan Lu Dongsheng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第22期1688-1694,共7页
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differ... In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. 展开更多
关键词 neural stem cells neural progenitor cells fibroblast growth factor 8 Sonic Hedgehog signalpathway SECRETION dynamic DIFFERENTIATION NEURONS neural regeneration
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部