Phytoremediation offers a cost-effective, non-intrusive, and safe alternative to conventional cleanup techniques. In this study, we used ornamental hydrophytes plants as constructed wetlands to treat urban or rural do...Phytoremediation offers a cost-effective, non-intrusive, and safe alternative to conventional cleanup techniques. In this study, we used ornamental hydrophytes plants as constructed wetlands to treat urban or rural domestic wastewater. Most ornamental hydrophytes adapted to the wastewater well, and were fairly efficient in scavenging BOD5 (biological oxygen demand 5 d), COD (chemical oxygen demand), TN (total nitrogen), TP (total phosphorus) and heavy metals (Cr, Pb, Cd) in the wastewater. However, the efficiency varied a lot for various species to different contaminants, Iris pseudacorus L. and Acorus gramineus Soland were good choices for treatment of composite-polluted urban wastewater. Some variation in the change of membrane peroxidation and endogenous protective system in responses to wastewater was found among six hydrophytes, which have a correlation with the efficiency of wastewater treatment. It may demonstrate that the developed antioxidative systems of L pseudacorus and A. gramineus contributed much to their superiority. On the other hand, interaction of different components in the wastewater might have certain effects on phytoremediation.展开更多
基金Project supported by the Key Science and Technology Program of Zhejiang Province(No.2005C24011)the Open Fund of Ministry of Education Key Lab of Environment Remediafion and Ecological Health(No. 2005204).
文摘Phytoremediation offers a cost-effective, non-intrusive, and safe alternative to conventional cleanup techniques. In this study, we used ornamental hydrophytes plants as constructed wetlands to treat urban or rural domestic wastewater. Most ornamental hydrophytes adapted to the wastewater well, and were fairly efficient in scavenging BOD5 (biological oxygen demand 5 d), COD (chemical oxygen demand), TN (total nitrogen), TP (total phosphorus) and heavy metals (Cr, Pb, Cd) in the wastewater. However, the efficiency varied a lot for various species to different contaminants, Iris pseudacorus L. and Acorus gramineus Soland were good choices for treatment of composite-polluted urban wastewater. Some variation in the change of membrane peroxidation and endogenous protective system in responses to wastewater was found among six hydrophytes, which have a correlation with the efficiency of wastewater treatment. It may demonstrate that the developed antioxidative systems of L pseudacorus and A. gramineus contributed much to their superiority. On the other hand, interaction of different components in the wastewater might have certain effects on phytoremediation.