期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects 被引量:2
1
作者 Yanni He Fei Li +5 位作者 Peng Jiang Feiyan Cai Qin Lin Meijun Zhou Hongmei Liu Fei Yan 《Bioactive Materials》 SCIE CSCD 2023年第3期223-238,共16页
Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects.However,the use of exogenous bone marrow mesenchymal stem cells(BMSCs)still faces many challenges such as limited sour... Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects.However,the use of exogenous bone marrow mesenchymal stem cells(BMSCs)still faces many challenges such as limited sources and potential risks.It is important to develop new approach to effectively recruit endogenous BMSCs and capture them for in situ bone regeneration.Here,we designed an acoustically responsive scaffold(ARS)and embedded it into SDF-1/BMP-2 loaded hydrogel to obtain biomimetic hydrogel scaffold complexes(BSC).The SDF-1/BMP-2 cytokines can be released on demand from the BSC implanted into the defected bone via pulsed ultrasound(p-US)irradiation at optimized acoustic parameters,recruiting the endogenous BMSCs to the bone defected or BSC site.Accompanied by the daily p-US irradiation for 14 days,the alginate hydrogel was degraded,resulting in the exposure of ARS to these recruited host stem cells.Then another set of sinusoidal continuous wave ultrasound(s-US)irradiation was applied to excite the ARS intrinsic resonance,forming highly localized acoustic field around its surface and generating enhanced acoustic trapping force,by which these recruited endogenous stem cells would be captured on the scaffold,greatly promoting them to adhesively grow for in situ bone tissue regeneration.Our study provides a novel and effective strategy for in situ bone defect repairing through acoustically manipulating endogenous BMSCs. 展开更多
关键词 Acoustically responsive scaffolds Biomimetic hydrogel scaffold complexes endogenous stem cells Acoustic radiation force Bone defect repairing
原文传递
Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction 被引量:3
2
作者 Zhong-Cheng Xin Yong-De Xu +2 位作者 Guiting Lin Tom FLue Ying-Lu Guo 《Asian Journal of Andrology》 SCIE CAS CSCD 2016年第1期10-15,共6页
Transplanted stem cells (SCs), owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED). However, insufficient source, invasive procedures, ethical and... Transplanted stem cells (SCs), owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED). However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1) SC niche and SC biological features in vitro; (2) localization and mobilization of endogenous SCs; (3) existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED. 展开更多
关键词 endogenous stem cell erectile dysfunction HOMING NICHE
原文传递
Basic fibroblast growth factor increases the numbe of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice
3
作者 Weihui Huang Dawei Zang Yi Lu Ping Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期761-765,共5页
This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) receptors and production of endogenous neural stem cells in the SOD1 G93AG1H transgenic mouse model of amyotrophic lateral s... This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) receptors and production of endogenous neural stem cells in the SOD1 G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice. 展开更多
关键词 amino methyl isoxazole propionic acid receptor amyotrophic lateral sclerosis basic fibroblast growth factor endogenous neural stem cells
下载PDF
Current evidence on potential of adipose derived stem cells to enhance bone regeneration and future projection 被引量:3
4
作者 Quang Le Vedavathi Madhu +4 位作者 Joseph M Hart Charles R Farber Eli R Zunder Abhijit S Dighe Quanjun Cui 《World Journal of Stem Cells》 SCIE 2021年第9期1248-1277,共30页
Injuries to the postnatal skeleton are naturally repaired through successive stepsinvolving specific cell types in a process collectively termed “bone regeneration”.Although complex, bone regeneration occurs through... Injuries to the postnatal skeleton are naturally repaired through successive stepsinvolving specific cell types in a process collectively termed “bone regeneration”.Although complex, bone regeneration occurs through a series of well-orchestratedstages wherein endogenous bone stem cells play a central role. In most situations,bone regeneration is successful;however, there are instances when it fails andcreates non-healing injuries or fracture nonunion requiring surgical or therapeuticinterventions. Transplantation of adult or mesenchymal stem cells (MSCs) definedby the International Society for Cell and Gene Therapy (ISCT) as CD105+-CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is beinginvestigated as an attractive therapy for bone regeneration throughout the world.MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), aregaining increasing attention since this is the most abundant source of adult stemcells and the isolation process for ADSCs is straightforward. Currently, there isnot a single Food and Drug Administration (FDA) approved ADSCs product forbone regeneration. Although the safety of ADSCs is established from their usagein numerous clinical trials, the bone-forming potential of ADSCs and MSCs, ingeneral, is highly controversial. Growing evidence suggests that the ISCT definedphenotype may not represent bona fide osteoprogenitors. Transplantation of bothADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146,AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown torepresent osteogenic sub-population within ADSCs. Amongst other strategies toimprove the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 andBMP signaling pathways of ADSCs has shown promising results. The U.S. FDAreveals that 73% of Investigational New Drug applications for stem cell-basedproducts rely on CD105 expression as the “positive” marker for adult stem cells.A concerted effort involving the scientific community, clinicians, industries, andregulatory bodies to redefine ADSCs using powerful selection markers andstrategies to modulate signaling pathways of ADSCs will speed up thetherapeutic use of ADSCs for bone regeneration. 展开更多
关键词 Mesenchymal stem cells Adipose-derived stem cells endogenous stem cells Skeletal stem cells Bone regeneration
下载PDF
Dl-3-butylphthalide-enhanced hematopoietic stem cell transplantation and endogenous stem cell mobilization for the treatment of cerebral infarcts
5
作者 Baoquan Lu Xiaoming Shang +5 位作者 Yongqiu Li Hongying Ma Chunqin Liu Jianmin Li Yingqi Zhang Shaoxin Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第7期494-499,共6页
Exogenous stem cell transplantation and endogenous stem cell mobilization are both effective for the treatment of acute cerebral infarction. The compound dl-3-butylphthalide is known to improve microcirculation and he... Exogenous stem cell transplantation and endogenous stem cell mobilization are both effective for the treatment of acute cerebral infarction. The compound dl-3-butylphthalide is known to improve microcirculation and help brain cells at the infarct loci. This experiment aimed to investigate the effects of dl-3-butylphthalide intervention based on the transplantation of hematopoietic stem cells and mobilization of endogenous stem cells in a rat model of cerebral infarction, following middle cerebral artery occlusion. Results showed that neurological function was greatly improved and infarct volume was reduced in rats with cerebral infarction. Data also showed that dl-3-butylphthalide can promote hematopoietic stem cells to transform into vascular endothelial cells and neuronal-like cells, and also enhance the therapeutic effect on cerebral infarction by hematopoietic stem cell transplantation and endogenous stem cell mobilization. 展开更多
关键词 DL-3-BUTYLPHTHALIDE hematopoietic stem cells endogenous stem cells INFARCTION stem cell mobilization neural regeneration
下载PDF
Effects of leukemia inhibitory factor on endogenous neural stem cell proliferation and glycoprotein-130 expression in a mouse model of cerebral infarction 被引量:2
6
作者 Yufeng Lin Yadan Li Dawei Zang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1452-1456,共5页
Leukemia inhibitory factor (LIF) has been shown to promote proliferation of endogenous neural stem cells. In this study, we treated mice with cerebral infarction using LIF to investigate whether the LIF receptor sub... Leukemia inhibitory factor (LIF) has been shown to promote proliferation of endogenous neural stem cells. In this study, we treated mice with cerebral infarction using LIF to investigate whether the LIF receptor subunit glycoprotein (gp)130 is involved in neuroprotection. After LIF treatment, the motor function of model mice was significantly improved. Immunofluorescence histochemistry showed increased numbers of endogenous neural stem cells surrounding the infarct foci. Western blot analysis revealed that gp130 expression was significantly decreased surrounding the infarcted foci. Results demonstrated that LIF promoted the proliferation of endogenous neural stem cells by inhibiting gp130 protein expression. 展开更多
关键词 Leukemia inhibitory factor endogenous neural stem cell glycoprotein-130 cerebral infarction PROLIFERATION neural regeneration
下载PDF
Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction 被引量:2
7
作者 Weihui Huang Yadan Li +2 位作者 Yufeng Lin Xue Ye Dawei Zang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第19期1469-1474,共6页
The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 tJg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor admini... The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 tJg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction. 展开更多
关键词 leukemia inhibitory factor basic fibroblast growth factor endogenous neural stem cells free radical MALONDIALDEHYDE nitric oxide glutathione peroxidase superoxide dismutase NEUROPROTECTION
下载PDF
Effect of valproic acid on endogenous neural stem cell proliferation in a rat model of spinal cord injury 被引量:1
8
作者 Guoxin Nan Ming Li +3 位作者 Weihong Liao Jiaqiang Qin Yujiang Cao Youqiong Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第7期513-517,共5页
BACKGROUND: Valproic acid has been reported to decrease apoptosis, promote neuronal differentiation of brain-derived neural stem cells, and inhibit glial differentiation of brain-derived neural stem cells. OBJECTIVE... BACKGROUND: Valproic acid has been reported to decrease apoptosis, promote neuronal differentiation of brain-derived neural stem cells, and inhibit glial differentiation of brain-derived neural stem cells. OBJECTIVE: To investigate the effects of valproic acid on proliferation of endogenous neural stem cells in a rat model of spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, neuropathological study was performed at Key Laboratory of Trauma, Buming, and Combined Injury, Research Institute of Surgery, Daping Hospital, the Third Military Medical University of Chinese PLA between November 2005 and February 2007. MATERIALS: A total of 45 adult, Wistar rats were randomly divided into sham surgery (n = 5), injury (n = 20), and valproic acid (n = 20) groups. Valproic acid was provided by Sigma, USA. METHODS: Injury was induced to the T10 segment in the injury and valproic acid groups using the metal weight-dropping method. The spinal cord was exposed without contusion in the sham surgery group. Rats in the valproic acid group were intraperitoneally injected with 150 mg/kg valproic acid every 12 hours (twice in total).MAIN OUTCOME MEASURES: Nestin expression (5 mm from injured center) was detected using immunohistochemistry at 1,3 days, 1, 4, and 8 weeks post-injury. RESULTS: Low expression of nestin was observed in the cytoplasm, but rarely in the white matter of the spinal cord in the sham surgery group. In the injury group, nestin expression was observed in the ependyma and pia mater one day after injury, and expression reached a peak at 1 week (P 〈 0.05). Expression was primarily observed in the ependymal cells, which expanded towards the white and gray matter of the spinal cord. Nestin expression rapidly decreased by 4 weeks post-injury, and had almost completely disappeared by 8 weeks. At 24 hours after spinal cord injury, there was no significant difference in nestin expression between the valproic acid and injury groups. At 1 week, there was a significant increase in the number of nestin-positive cells surrounding the central canal in valproic acid group compared with the injury group (P 〈 0.05). Expression reached a peak by 4 weeks, and it was still present at 8 weeks. CONCLUSION: Valproic acid promoted endogenous neural stem cell proliferation following spinal cord injury in rats. 展开更多
关键词 spinal cord injury NESTIN endogenous neural stem cells valproic acid rats
下载PDF
Engineered biochemical cues of regenerative biomaterials to enhance endogenous stem/progenitor cells(ESPCs)-mediated articular cartilage repair 被引量:1
9
作者 Liangbin Zhou Jietao Xu +12 位作者 Andrea Schwa Wenxue Tong Jiankun Xu Lizhen Zheng Ye Li Zhuo Li Shunxiang Xu Ziyi Chen Li Zou Xin Zhao Gerjo J.V.Mvan Osch Chunyi Wen Ling Qin 《Bioactive Materials》 SCIE CSCD 2023年第8期490-512,共23页
As a highly specialized shock-absorbing connective tissue,articular cartilage(AC)has very limited self-repair capacity after traumatic injuries,posing a heavy socioeconomic burden.Common clinical therapies for small-t... As a highly specialized shock-absorbing connective tissue,articular cartilage(AC)has very limited self-repair capacity after traumatic injuries,posing a heavy socioeconomic burden.Common clinical therapies for small-to medium-size focal AC defects are well-developed endogenous repair and cell-based strategies,including microfracture,mosaicplasty,autologous chondrocyte implantation(ACI),and matrix-induced ACI(MACI).However,these treatments frequently result in mechanically inferior fibrocartilage,low cost-effectiveness,donor site morbidity,and short-term durability.It prompts an urgent need for innovative approaches to pattern a pro-regenerative microenvironment and yield hyaline-like cartilage with similar biomechanical and biochemical properties as healthy native AC.Acellular regenerative biomaterials can create a favorable local environment for AC repair without causing relevant regulatory and scientific concerns from cell-based treatments.A deeper understanding of the mechanism of endogenous cartilage healing is furthering the(bio)design and application of these scaffolds.Currently,the utilization of regenerative biomaterials to magnify the repairing effect of joint-resident endogenous stem/progenitor cells(ESPCs)presents an evolving improvement for cartilage repair.This review starts by briefly summarizing the current understanding of endogenous AC repair and the vital roles of ESPCs and chemoattractants for cartilage regeneration.Then several intrinsic hurdles for regenerative biomaterials-based AC repair are discussed.The recent advances in novel(bio)design and application regarding regenerative biomaterials with favorable biochemical cues to provide an instructive extracellular microenvironment and to guide the ESPCs(e.g.adhesion,migration,proliferation,differentiation,matrix production,and remodeling)for cartilage repair are summarized.Finally,this review outlines the future directions of engineering the next-generation regenerative biomaterials toward ultimate clinical translation. 展开更多
关键词 Regenerative biomaterials endogenous stem/progenitor cells(ESPCs) Articular cartilage(AC)repair Biochemical cues
原文传递
Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice
10
作者 Rui-Lin Zhu Yuan Fang +3 位作者 Hong-Hua Yu Dong FChen Liu Yang Kin-Sang Cho 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第7期1317-1322,共6页
Müller cells(MC) are considered dormant retinal progenitor cells in mammals.Previous studies demonstrated ephrin-As act as negative regulators of neural progenitor cells in the retina and brain.It remains unclear... Müller cells(MC) are considered dormant retinal progenitor cells in mammals.Previous studies demonstrated ephrin-As act as negative regulators of neural progenitor cells in the retina and brain.It remains unclear whether the lack of ephrin-A2/A3 is sufficient to promote the neurogenic potential of MC.Here we investigated whether the MC is the primary retinal cell type expressing ephrin-A2/A3 and their role on the neurogenic potential of Müller cells.In this study, we showed that ephrin-A2/A3 and their receptor EphA4 were expressed in retina and especially enriched in MC.The level of ephrin As/EphA4 expression increased as the retina matured that is correlated with the reduced proliferative and progenitor cell potential of MC.Next, we investigated the proliferation in primary MC cultures isolated from wild-type and A2~(–/–) A3~(–/–) mice by 5-ethynyl-2′-deoxyuridine(EdU) incorporation.We detected a significant increase of EdU~+ cells in MC derived from A2~(–/–) A3~(–/–) mice.Next, we investigated the role of ephrin-A2/A3 in mice undergoing photoreceptor degeneration such as Rhodopsin knockout(Rho~(–/–)) mice.To further evaluate the role of ephrin-A2/A3 in MC proliferation in vivo, EdU was injected intraperitoneally to adult wild-type, A2~(–/–) A3~(–/–), Rho~(–/–) and Rho~(–/–) A2~(–/–) A3~(–/–) mice and the numbers of EdU~+ cells distributed among different layers of the retina.Ephrin As/EphA4 expression was upregulated in the retina of Rho~(–/–) mice compared to the wild-type mice.In addition, cultured MC derived from ephrin-A2~(–/–) A3~(–/–) mice also expressed higher levels of progenitor cell markers and exhibited higher proliferation potential than those from wild-type mice.Interestingly, we detected a significant increase of EdU~+ cells in the retinas of adult ephrin-A2~(–/–) A3~(–/–) mice mainly in the inner nuclear layer;and these EdU~+ cells were co-localized with MC marker, cellular retinaldehyde-binding protein, suggesting some proliferating cells are from MC.In Rhodopsin knockout mice(Rho~(–/–) A2~(–/–) A3~(–/–) mice), a significantly greater amount of EdU~+ cells were located in the ciliary body, retina and RPE than that of Rho~(–/–) mice.Comparing between 6 and 12 weeks old Rho~(–/–) A2~(–/–) A3~(–/–) mice, we recorded more EdU~+ cells in the outer nuclear layer in the 12-week-old mice undergoing severe retinal degeneration.Taken together, Ephrin-A2/A3 are negative regulators of the proliferative and neurogenic potentials of MC.Absence of ephrin-A2/A3 promotes the migration of proliferating cells into the outer nuclear layer and may lead to retinal cell regeneration.All experimental procedures were approved by the Animal Care and Use Committee at Schepens Eye Research Institute, USA(approval No.S-353-0715) on October 24, 2012. 展开更多
关键词 endogenous stem cell EphA4 ephrin-A2 ephrin-A3 EPHRINS Müller cell photoreceptor cell regeneration retinal degeneration retinal regeneration retinal stem cell
下载PDF
Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy 被引量:4
11
作者 Zheng Z Wei Yan-Bing Zhu +5 位作者 James Y Zhang Myles R McCrary Song Wang Yong-Bo Zhang Shan-Ping Yu Ling Wei 《Chinese Medical Journal》 SCIE CAS CSCD 2017年第19期2361-2374,共14页
Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and ... Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. Data Sources: This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords:"stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation."Study Selection: Original articles and critical reviews on the topics were selected. Results: Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications. 展开更多
关键词 Angiogenesis Factor Cell Transplantation endogenous stem cells Genome Editing HYPOXIA Hypoxic Preconditioning Induced Pluripotent stem cells Neurological Disorders TUMOR
原文传递
EndoN treatment allows neuroblasts to leave the rostral migratory stream and migrate towards a lesion within the prefrontal cortex of rats
12
作者 Jannis Gundelach Michael Koch 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第9期1740-1747,共8页
The binding properties of neural cell adhesion molecule are modulated by a polysialic acid moiety. This plays an important role in the migration of adult born neuroblasts from their area of origin, the subventricular ... The binding properties of neural cell adhesion molecule are modulated by a polysialic acid moiety. This plays an important role in the migration of adult born neuroblasts from their area of origin, the subventricular zone, towards the olfactory bulb. Polysialisation increases the migration speed of the cells and helps to prevent the neuroblasts from leaving their migration route, the rostral migratory stream. Here, we evaluated the potential of intraventricular application of endoneuraminidase-N, an enzyme that specifically cleaves polysialic acid from neural cell adhesion molecule, in a rat model for structural prefrontal cortex damage. As expected, endoneuraminidase-N caused the rostral migratory stream to become wider, with a less uniform cellular orientation. Furthermore, endoneuraminidase-N treatment caused the neuroblasts to leave the rostral migratory stream and migrate towards the lesioned tissue. Despite the neuroblasts not being differentiated into neurons after a survival time of three weeks, this technique provides a solid animal model for future work on the migration and differentiation of relocated neuroblasts and might provide a basis for a future endogenous stem cell-based therapy for structural brain damage. The experiments were approved by the local animal care committee(522-27-11/02-00, 115;Senatorin für Wissenschaft, Gesundheit und Verbraucherschutz, Bremen, Germany) on February 10, 2016. 展开更多
关键词 endogenous stem cells endoneuraminidase neural cell adhesion molecule neuroblast migration olfactory bulb polisialic acid structural brain damage subventricular zone
下载PDF
A bioactive material with dual integrin-targeting ligands regulates specific endogenous cell adhesion and promotes vascularized bone regeneration in adult and fetal bone defects
13
作者 Dake Hao Ruiwu Liu +11 位作者 Tomas Gonzalez Fernandez Christopher Pivetti Jordan Elizabeth Jackson Edwin Samuel Kulubya Hong-Jiang Jiang Hai-Yang Ju Wen-Liang Liu Alyssa Panitch Kit S.Lam JKent Leach Diana L.Farmer Aijun Wang 《Bioactive Materials》 SCIE CSCD 2023年第2期179-193,共15页
Significant progress has been made in designing bone materials capable of directing endogenous cells to promote vascularized bone regeneration.However,current strategies lack regulation of the specific endogenous cell... Significant progress has been made in designing bone materials capable of directing endogenous cells to promote vascularized bone regeneration.However,current strategies lack regulation of the specific endogenous cell populations for vascularized bone regeneration,thus leading to adverse tissue formation and decreased regenerative efficiency.Here,we engineered a biomaterial to regulate endogenous cell adhesion and promote vascularized bone regeneration.The biomaterial works by presenting two synthetic ligands,LLP2A and LXW7,explicitly targeting integrinsα4β1 andαvβ3,respectively,expressed on the surfaces of the cells related to bone formation and vascularization,such as mesenchymal stem cells(MSCs),osteoblasts,endothelial progenitor cells(EPCs),and endothelial cells(ECs).In vitro,the LLP2A/LXW7 modified biomaterial improved the adhesion of MSCs,osteoblasts,EPCs,and ECs via integrinα4β1 andαvβ3,respectively.In an adult rat calvarial bone defect model,the LLP2A/LXW7 modified biomaterial enhanced bone formation and vascularization by synergistically regulating endogenous cells with osteogenic and angiogenic potentials,such as DLX5^(+)cells,osteocalcin^(+)cells,CD34^(+)/CD45-cells and CD31^(+)cells.In a fetal sheep spinal bone defect model,the LLP2A/LXW7 modified biomaterial augmented bone formation and vascularization without any adverse effects.This innovative biomaterial offers an off-the-shelf,easy-to-use,and biologically safe product suitable for vascularized bone regeneration in both fetal and adult disease environments. 展开更多
关键词 Integrin-based ligands endogenous stem cells Bone formation VASCULARIZATION Adult and fetal bone defects
原文传递
Identification of key genes involved in recovery from spinal cord injury in adult zebrafish 被引量:1
14
作者 Wen-Yuan Shen Xuan-Hao Fu +8 位作者 Jun Cai Wen-Chang Li Bao-You Fan Yi-Lin Pang Chen-Xi Zhao Muhtidir Abula Xiao-Hong Kong Xue Yao Shi-Qing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第6期1334-1342,共9页
Zebrafish are an effective vertebrate model to study the mechanisms underlying recovery after spinal cord injury.The subacute phase after spinal cord injury is critical to the recovery of neurological function,which i... Zebrafish are an effective vertebrate model to study the mechanisms underlying recovery after spinal cord injury.The subacute phase after spinal cord injury is critical to the recovery of neurological function,which involves tissue bridging and axon regeneration.In this study,we found that zebrafish spontaneously recovered 44%of their swimming ability within the subacute phase(2 weeks)after spinal cord injury.During this period,we identified 7762 differentially expressed genes in spinal cord tissue:2950 were up-regulated and 4812 were down-regulated.These differentially expressed genes were primarily concentrated in the biological processes of the respiratory chain,axon regeneration,and cell-component morphogenesis.The genes were also mostly involved in the regulation of metabolic pathways,the cell cycle,and gene-regulation pathways.We verified the gene expression of two differentially expressed genes,clasp2 up-regulation and h1m down-regulation,in zebrafish spinal cord tissue in vitro.Pathway enrichment analysis revealed that up-regulated clasp2 functions similarly to microtubule-associated protein,which is responsible for axon extension regulated by microtubules.Down-regulated h1m controls endogenous stem cell differentiation after spinal cord injury.This study provides new candidate genes,clasp2 and h1m,as potential therapeutic intervention targets for spinal cord injury repair by neuroregeneration.All experimental procedures and protocols were approved by the Animal Ethics Committee of Tianjin Institute of Medical&Pharmaceutical Sciences(approval No.IMPS-EAEP-Q-2019-02)on September 24,2019. 展开更多
关键词 axon regeneration clasp2 endogenous neural stem cells h1m MICROTUBULE NANOG neural regeneration NEUROGENESIS spinal cord injury subacute phase
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部