In order to explore whether the endophytic Trichoderma strain P3.9 of loquat has an adverse effect on indigenous fungi in loquat rhizosphere soil, the quantitative change of aboriginal fungi is determined by dish dilu...In order to explore whether the endophytic Trichoderma strain P3.9 of loquat has an adverse effect on indigenous fungi in loquat rhizosphere soil, the quantitative change of aboriginal fungi is determined by dish dilution and plate colony-counting method with time changing in one season. The results showed that after the inoculation of endophytic Trichoderma strain P3.9, the total number of indigenous fungi in loquat rhizosphere soil had an obviously downward trend in contrast with the control which was without inoculation. For treatment groups, 5~60 d after inoculation, the number of indigenous fungi showed a cyclic upward-downward trend at a 10-d interval except for the insignificant changes from 35 to 40 d;60~90 d after inoculation, the upward-downward trend repeated at a 30-d interval. For the control group, the number of indigenous fungi first presented a downward-upward trend every 15 d during the period of 5~50 d, and then an upward-downward trend from the period of 50~70 d and the 75~85 d, and lastly continuous growth from 85 to 90 d;particularly, it did not vary greatly from 70 to 75 d. In general, the quantity of indigenous fungi is unstable in the control group which fluctuates more significantly than in the treatment group. The number of indigenous fungi in the treatment group was significantly lower than that in the control group. The Trichoderma strain P3.9 can inhibit indigenous fungi in loquat rhizosphere soil effectively.展开更多
The potential of several endophytic Trichoderma isolates, isolated from healthy oil palm roots was assessed against Ganoderma boninense (PER71), the causal agent of Basal Stem Rot (BSR) disease through in vitro screen...The potential of several endophytic Trichoderma isolates, isolated from healthy oil palm roots was assessed against Ganoderma boninense (PER71), the causal agent of Basal Stem Rot (BSR) disease through in vitro screening. In the dual culture assay, all endophytic Trichoderma isolates were found to be capable of inhibiting the growth of PER71 mycelium, by causing more than 70% inhibition of the pathogen’s radial growth (PIRG). Trichoderma asperellum M103 has caused the highest inhibition at 93.14%. The volatile compound produced by M103 also suppressed 65% of the pathogen’s radial growth. On the other hand, T. harzianum, M108 was found to have the ability to produce non-volatile compounds that is toxic and it has effectively inhibited 98.18% of the growth of PER71. Collectively, T. asperellum M103 and T. harzianum M108 have the potential to inhibit the growth of G. boninense PER71. These isolates were shown to be viable options for the future management of G. boninense in the oil palm field.展开更多
文摘In order to explore whether the endophytic Trichoderma strain P3.9 of loquat has an adverse effect on indigenous fungi in loquat rhizosphere soil, the quantitative change of aboriginal fungi is determined by dish dilution and plate colony-counting method with time changing in one season. The results showed that after the inoculation of endophytic Trichoderma strain P3.9, the total number of indigenous fungi in loquat rhizosphere soil had an obviously downward trend in contrast with the control which was without inoculation. For treatment groups, 5~60 d after inoculation, the number of indigenous fungi showed a cyclic upward-downward trend at a 10-d interval except for the insignificant changes from 35 to 40 d;60~90 d after inoculation, the upward-downward trend repeated at a 30-d interval. For the control group, the number of indigenous fungi first presented a downward-upward trend every 15 d during the period of 5~50 d, and then an upward-downward trend from the period of 50~70 d and the 75~85 d, and lastly continuous growth from 85 to 90 d;particularly, it did not vary greatly from 70 to 75 d. In general, the quantity of indigenous fungi is unstable in the control group which fluctuates more significantly than in the treatment group. The number of indigenous fungi in the treatment group was significantly lower than that in the control group. The Trichoderma strain P3.9 can inhibit indigenous fungi in loquat rhizosphere soil effectively.
文摘The potential of several endophytic Trichoderma isolates, isolated from healthy oil palm roots was assessed against Ganoderma boninense (PER71), the causal agent of Basal Stem Rot (BSR) disease through in vitro screening. In the dual culture assay, all endophytic Trichoderma isolates were found to be capable of inhibiting the growth of PER71 mycelium, by causing more than 70% inhibition of the pathogen’s radial growth (PIRG). Trichoderma asperellum M103 has caused the highest inhibition at 93.14%. The volatile compound produced by M103 also suppressed 65% of the pathogen’s radial growth. On the other hand, T. harzianum, M108 was found to have the ability to produce non-volatile compounds that is toxic and it has effectively inhibited 98.18% of the growth of PER71. Collectively, T. asperellum M103 and T. harzianum M108 have the potential to inhibit the growth of G. boninense PER71. These isolates were shown to be viable options for the future management of G. boninense in the oil palm field.