期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
Ferroptosis and endoplasmic reticulum stress in ischemic stroke 被引量:1
1
作者 Yina Li Mingyang Li +4 位作者 Shi Feng Qingxue Xu Xu Zhang Xiaoxing Xiong Lijuan Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期611-618,共8页
Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The prim... Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum,and the progression of inflammatory diseases can trigger endoplasmic reticulum stress.Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival.Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke.However,there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke.This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke,aiming to provide a reference for developing treatments for ischemic stroke. 展开更多
关键词 cell death endoplasmic reticulum stress ferroptosis ischemic stroke lipid peroxidation
下载PDF
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis
2
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model
3
作者 Hao Zhang Xia Zha +5 位作者 Yi Zheng Xiaoyun Liu Mabrouk Elsabagh Hongrong Wang Honghua Jiang Mengzhi Wang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期201-217,共17页
Background Exposure to bisphenol A(BPA),an environmental pollutant known for its endocrine-disrupting properties,during gestation has been reported to increase the risk of fetal growth restriction(FGR)in an ovine mode... Background Exposure to bisphenol A(BPA),an environmental pollutant known for its endocrine-disrupting properties,during gestation has been reported to increase the risk of fetal growth restriction(FGR)in an ovine model of pregnancy.We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta,oxidative stress,inflammatory responses,autophagy and endoplasmic reticulum stress(ERS).However,precise mechanisms underlying the BPA-induced placental dysfunction,and subsequently,FGR,as well as the potential involvement of placental ERS in these complications,remain to be investigated.Methods In vivo experiment,16 twin-pregnant(from d 40 to 130 of gestation)Hu ewes were randomly distributed into two groups(8 ewes each).One group served as a control and received corn oil once a day,whereas the other group received BPA(5 mg/kg/d as a subcutaneous injection).In vitro study,ovine trophoblast cells(OTCs)were exposed to 4 treatments,6 replicates each.The OTCs were treated with 400μmol/L BPA,400μmol/L BPA+0.5μg/m L tunicamycin(Tm;ERS activator),400μmol/L BPA+1μmol/L 4-phenyl butyric acid(4-PBA;ERS antagonist)and DMEM/F12 complete medium(control),for 24 h.Results In vivo experiments,pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency,progesterone(P4)level and fetal weight,and an increase in placental estrogen(E2)level,together with barrier dysfunctions,OS,inflammatory responses,autophagy and ERS in type A cotyledons.In vitro experiment,the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy,ERS,pro-apoptosis and inflammatory response,and a decrease in the P4 level and the related protein and gene expressions of antioxidant,anti-apoptosis and barrier function.Moreover,treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine(the increased E2 level and decreased P4 level),OS,inflammatory responses,autophagy,and ERS.However,treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above.Conclusions In general,the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs,and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine,OS,inflammatory responses,and autophagy.These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development. 展开更多
关键词 AUTOPHAGY Bisphenol A endoplasmic reticulum stress Fetal growth restriction Inflammatory responses SHEEP
下载PDF
Exosomes derived from microglia overexpressing miR-124-3p alleviate neuronal endoplasmic reticulum stress damage after repetitive mild traumatic brain injury
4
作者 Yan Wang Dai Li +12 位作者 Lan Zhang Zhenyu Yin Zhaoli Han Xintong Ge Meimei Li Jing Zhao Shishuang Zhang Yan Zuo Xiangyang Xiong Han Gao Qiang Liu Fanglian Chen Ping Lei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2010-2018,共9页
We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repet... We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury. 展开更多
关键词 apoptosis C/EBP homologous protein endoplasmic reticulum stress EXOSOME inositol-requiring enzyme MICROGLIA miR-124-3p neuron repetitive mild traumatic brain injury X-box binding protein 1
下载PDF
Endoplasmic reticulum stress improved chicken tenderness,promoted apoptosis and autophagy during postmortem ageing
5
作者 Yuwei Chai Lin Chen +4 位作者 Shuya Xiang Linxuan Wu Xuebo Liu Jun Luo Xianchao Feng 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2141-2151,共11页
In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apo... In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apoptosis and autophagy during 5 days ageing.TM-induced ER stress reduced shear force,enhanced myofibril fragmentation index(MFI),disrupted myofibril structure,increased desmin degradation,and activatedμ-calpain and caspase-12.In addition,TM-induced ER stress increased the expression of Bax,Bim,and cytochrome c,and decreased the expression of Bcl-x L.Furthermore,TM-induced ER stress improved the conversion of LC3I to LC3II,raised the expression of Beclin-1,and decreased the expression of p62,PI3K,and m TOR.The opposite results were observed after 4-PBA treatment.These results suggested that ER stress could improve chicken tenderness,promote apoptosis and autophagy during chicken postmortem ageing. 展开更多
关键词 endoplasmic reticulum stress TENDERNESS APOPTOSIS AUTOPHAGY CHICKEN
下载PDF
Amlodipine inhibits the proliferation and migration of esophageal carcinoma cells through the induction of endoplasmic reticulum stress
6
作者 Yan-Min Chen Wen-Qian Yang +3 位作者 Cheng-Wei Gu Ying-Ying Fan Yu-Zhen Liu Bao-Sheng Zhao 《World Journal of Gastroenterology》 SCIE CAS 2024年第4期367-380,共14页
BACKGROUND L-type calcium channels are the only protein channels sensitive to calcium channel blockers,and are expressed in various cancer types.The Cancer Genome Atlas database shows that the mRNA levels of multiple ... BACKGROUND L-type calcium channels are the only protein channels sensitive to calcium channel blockers,and are expressed in various cancer types.The Cancer Genome Atlas database shows that the mRNA levels of multiple L-type calcium channel subunits in esophageal squamous cell carcinoma tumor tissue are significantly higher than those in normal esophageal epithelial tissue.Therefore,we hypothesized that amlodipine,a long-acting dihydropyridine L-type calcium channel blocker,may inhibit the occurrence and development of esophageal cancer(EC).AIM To investigate the inhibitory effects of amlodipine on EC through endoplasmic reticulum(ER)stress.METHODS Cav1.3 protein expression levels in 50 pairs of EC tissues and corresponding paracancerous tissues were examined.Subsequently,the inhibitory effects of amlodipine on proliferation and migration of EC cells in vitro were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and Transwell assays.In vivo experiments were performed using murine xenograft model.To elucidate the underlying mechanisms,in vitro cell studies were performed to confirm that ER stress plays a role in inhibition proliferation and migration of EC cells treated with amlodipine.RESULTS The expression level of Cav1.3 in esophageal carcinoma was 1.6 times higher than that in paracancerous tissues.Amlodipine treatment decreased the viability of esophageal carcinoma cells in a dose-and time-dependent manner.In vivo animal experiments also clearly indicated that amlodipine inhibited the growth of EC tumors in mice.Additionally,amlodipine reduces the migration of tumor cells by inhibiting epithelial-mesenchymal transition(EMT).Mechanistic studies have demonstrated that amlodipine induces ER stress-mediated apoptosis and suppresses EMT.Moreover,amlodipine-induced autophagy was characterized by an increase in autophagy lysosomes and the accumulation of light chain 3B protein.The combination of amlodipine with the ER stress inhibitor 4-phenylbutyric acid further confirmed the role of the ER stress response in amlodipine-induced apoptosis,EMT,and autophagy.Furthermore,blocking autophagy increases the ratio of apoptosis and migration.CONCLUSION Collectively,we demonstrate for the first time that amlodipine promotes apoptosis,induces autophagy,and inhibits migration through ER stress,thereby exerting anti-tumor effects in EC. 展开更多
关键词 L-type calcium channel AMLODIPINE Esophageal cancer AUTOPHAGY endoplasmic reticulum stress
下载PDF
Cell division cyclin 25C knockdown inhibits hepatocellular carcinoma development by inducing endoplasmic reticulum stress
7
作者 Yan-Fei Li Fang-Yuan Zheng +4 位作者 Xin-Yu Miao Hai-Long Liu Yao-Yao Zhang Nai-Xia Chao Fa-Rong Mo 《World Journal of Gastroenterology》 SCIE CAS 2024年第19期2564-2574,共11页
BACKGROUND Cell division cyclin 25C(CDC25C)is a protein that plays a critical role in the cell cycle,specifically in the transition from the G2 phase to the M phase.Recent research has shown that CDC25C could be a pot... BACKGROUND Cell division cyclin 25C(CDC25C)is a protein that plays a critical role in the cell cycle,specifically in the transition from the G2 phase to the M phase.Recent research has shown that CDC25C could be a potential therapeutic target for cancers,particularly for hepatocellular carcinoma(HCC).However,the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood.AIM To explore the impact of CDC25C on cell proliferation and apoptosis,as well as its regulatory mechanisms in HCC development.METHODS Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences(LV-CDC25C shRNA)to knock down CDC25C.Subsequently,a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo.Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays,respectively.The expression of endoplasmic reticulum(ER)stress-related molecules(glucose-regulated protein 78,X-box binding protein-1,and C/EBP homologous protein)was measured in both cells and subcutaneous xenografts using quantitative real-time PCR(qRT-PCR)and western blotting.Additionally,apoptosis was investigated using flow cytometry,qRT-PCR,and western blotting.RESULTS CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction.A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice.CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response,ultimately promoting ER stress-induced apoptosis in HCC cells.CONCLUSION The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway. 展开更多
关键词 Cell division cyclin 25C Hepatocellular carcinoma endoplasmic reticulum stress PROLIFERATION Apoptosis
下载PDF
Stress granules inhibit endoplasmic reticulum stress-mediated apoptosis during hypoxia-induced injury in acute liver failure 被引量:2
8
作者 Wen-Yuan Li Fan Yang +2 位作者 Xun Li Lu-Wen Wang Yao Wang 《World Journal of Gastroenterology》 SCIE CAS 2023年第8期1315-1329,共15页
BACKGROUND Stress granules(SGs)could be formed under different stimulation to inhibit cell injury.AIM To investigate whether SGs could protect hepatocytes from hypoxia-induced damage during acute liver failure(ALF)by ... BACKGROUND Stress granules(SGs)could be formed under different stimulation to inhibit cell injury.AIM To investigate whether SGs could protect hepatocytes from hypoxia-induced damage during acute liver failure(ALF)by reducing endoplasmic reticulum stress(ERS)mediated apoptosis.METHODS The agonist of SGs,arsenite(Ars)was used to intervene hypoxia-induced hepatocyte injury cellular model and ALF mice models.Further,the siRNA of activating transcription factor 4(ATF4)and SGs inhibitor anisomycin was then used to intervene in cell models.RESULTS With the increase of hypoxia time from 4 h to 12 h,the levels of HIF-1α,ERS and apoptosis gradually increased,and the expression of SGs marker G3BP1 and TIA-1 was increased and then decreased.Compared with the hypoxia cell model group and ALF mice model,the levels of HIF-1α,apoptosis and ERS were increased in the Ars intervention group.After siRNA-ATF4 intervention,the level of SGs in cells increased,and the levels of HIF-1α,ERS and apoptosis decreased.Compared with the siRNA-ATF4 group,the levels of G3BP1 in the siRNAATF4+anisomycin group were decreased,and the levels of HIF-1α,ERS and apoptosis were increased.Moreover,compared with the ALF group,the degree of liver injury and liver function,the levels of HIF-1α,ERS and apoptosis in the Ars intervention group were decreased,the level of SGs was increased.CONCLUSION SGs could protect hepatocytes from hypoxia-induced damage during ALF by reducing ERSmediated apoptosis. 展开更多
关键词 Acute liver failure stress granules HYPOXIA endoplasmic reticulum stress APOPTOSIS
下载PDF
Potential role of microRNA-503 in Icariin-mediated prevention of high glucose-induced endoplasmic reticulum stress 被引量:2
9
作者 Bao-Lin Su Liang-Liang Wang +3 位作者 Liang-You Zhang Shu Zhang Qiang Li Gang-Yi Chen 《World Journal of Diabetes》 SCIE 2023年第8期1234-1248,共15页
BACKGROUND Dysregulated microRNA(miRNA)is crucial in the progression of diabetic nephropathy(DN).AIM To investigate the potential molecular mechanism of Icariin(ICA)in regulating endoplasmic reticulum(ER)stress-mediat... BACKGROUND Dysregulated microRNA(miRNA)is crucial in the progression of diabetic nephropathy(DN).AIM To investigate the potential molecular mechanism of Icariin(ICA)in regulating endoplasmic reticulum(ER)stress-mediated apoptosis in high glucose(HG)-induced primary rat kidney cells(PRKs),with emphasis on the role of miR-503 and sirtuin 4(SIRT4)in this process.METHODS Single intraperitoneal injection of streptozotocin(65 mg/kg)in Sprague-Dawley rats induce DN in the in vivo hyperglycemic model.Glucose-treated PRKs were used as an in vitro HG model.An immunofluorescence assay identified isolated PRKs.Cell Counting Kit-8 and flow cytometry analyzed the effect of ICA treatment on cell viability and apoptosis,respectively.Real-time quantitative polymerase chain reaction and western blot analyzed the levels of ER stressrelated proteins.Dual luciferase analysis of miR-503 binding to downstream SIRT4 was performed.RESULTS ICA treatment alleviated the upregulated miR-503 expression in vivo(DN)and in vitro(HG).Mechanistically,ICA reduced HG-induced miR-503 overexpression,thereby counteracting its function in downregulating SIRT4 levels.ICA regulated the miR-503/SIRT4 axis and subsequent ER stress to alleviate HG-induced PRKs injury.CONCLUSION ICA reduced HG-mediated inhibition of cell viability,promotion of apoptosis,and ER stress in PRKs.These effects involved regulation of the miR-503/SIRT4 axis.These findings indicate the potential of ICA to treat DN,and implicate miR-503 as a viable target for therapeutic interventions in DN. 展开更多
关键词 ICARIIN MicroRNA-503 Sirtuin 4 endoplasmic reticulum stress Diabetic nephropathy Kidney damage
下载PDF
Comprehensive analysis of endoplasmic reticulum stress-related mechanisms in type 2 diabetes mellitus 被引量:1
10
作者 Bo Liang Shu-Wen Chen +2 位作者 Yuan-Yuan Li Shun-Xiao Zhang Yan Zhang 《World Journal of Diabetes》 SCIE 2023年第6期820-845,共26页
BACKGROUND The endoplasmic reticulum(ER)is closely related to a wide range of cellular functions and is a key component to maintain and restore metabolic health.Type 2 diabetes mellitus(T2DM)is a serious threat to hum... BACKGROUND The endoplasmic reticulum(ER)is closely related to a wide range of cellular functions and is a key component to maintain and restore metabolic health.Type 2 diabetes mellitus(T2DM)is a serious threat to human health,but the ER stress(ERS)-related mechanisms in T2DM have not been fully elucidated.AIM To identify potential ERS-related mechanisms and crucial biomarkers in T2DM.METHODS We conducted gene set enrichment analysis(GSEA)and gene set variation analysis(GSVA)in myoblast and myotube form GSE166502,and obtained the differentially expressed genes(DEGs).After intersecting with ERS-related genes,we obtained ERS-related DEGs.Finally,functional analyses,immune infiltration,and several networks were established.RESULTS Through GSEA and GSVA,we identified several metabolic and immune-related pathways.We obtained 227 ERS-related DEGs and constructed several important networks that help to understand the mechanisms and treatment of T2DM.Finally,memory CD4^(+)T cells accounted for the largest proportion of immune cells.CONCLUSION This study revealed ERS-related mechanisms in T2DM,which might contribute to new ideas and insights into the mechanisms and treatment of T2DM. 展开更多
关键词 endoplasmic reticulum stress Type 2 diabetes mellitus Biomarkers Memory CD4^(+)T cells
下载PDF
TUG-891 inhibits neuronal endoplasmic reticulum stress and pyroptosis activation and protects neurons in a mouse model of intraventricular hemorrhage
11
作者 Hao-Xiang Wang Chang Liu +6 位作者 Yuan-You Li Yi Cao Long Zhao Yan-Jie Zhao Zi-Ang Deng Ai-Ping Tong Liang-Xue Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2278-2284,共7页
Pyroptosis plays an important role in hemorrhagic stroke.Excessive endoplasmic reticulum stress can cause endoplasmic reticulum dysfunction and cellular pyroptosis by regulating the nucleotide-binding oligomerization ... Pyroptosis plays an important role in hemorrhagic stroke.Excessive endoplasmic reticulum stress can cause endoplasmic reticulum dysfunction and cellular pyroptosis by regulating the nucleotide-binding oligomerization domain and leucine-rich repeat pyrin domain-containing protein 3(NLRP3)pathway.However,the relationship between pyroptosis and endoplasmic reticulum stress after intraventricular hemorrhage is unclear.In this study,we established a mouse model of intraventricular hemorrhage and found pyroptosis and endoplasmic reticulum stress in brain tissue.Intraperitoneal injection of the selective GPR120 agonist TUG-891 inhibited endoplasmic reticulum stress,pyroptosis,and inflammation and protected neurons.The neuroprotective effect of TUG-891 appears related to inhibition of endoplasmic reticulum stress and pyroptosis activation. 展开更多
关键词 ameliorating inflammation endoplasmic reticulum stress GPR120 GSDMD hemorrhagic stroke neurological function NLRP3 PYROPTOSIS TUG-891 unfolded protein response
下载PDF
Selenoproteins synergistically protect porcine skeletal muscle from oxidative damage via relieving mitochondrial dysfunction and endoplasmic reticulum stress
12
作者 Jinzhong Jing Ying He +10 位作者 Yan Liu Jiayong Tang Longqiong Wang Gang Jia Guangmang Liu Xiaoling Chen Gang Tian Jingyi Cai Lianqiang Che Bo Kang Hua Zhao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期2180-2196,共17页
Background The skeletal muscle of pigs is vulnerable to oxidative damage,resulting in growth retardation.Selenoproteins are important components of antioxidant systems for animals,which are generally regulated by diet... Background The skeletal muscle of pigs is vulnerable to oxidative damage,resulting in growth retardation.Selenoproteins are important components of antioxidant systems for animals,which are generally regulated by dietary selenium(Se)level.Here,we developed the dietary oxidative stress(DOS)-inducing pig model to investigate the protective effects of selenoproteins on DOS-induced skeletal muscle growth retardation.Results Dietary oxidative stress caused porcine skeletal muscle oxidative damage and growth retardation,which is accompanied by mitochondrial dysfunction,endoplasmic reticulum(ER)stress,and protein and lipid metabolism disorders.Supplementation with Se(0.3,0.6 or 0.9 mg Se/kg)in form of hydroxy selenomethionine(OH-SeMet)linearly increased muscular Se deposition and exhibited protective effects via regulating the expression of selenotranscriptome and key selenoproteins,which was mainly reflected in lower ROS levels and higher antioxidant capacity in skeletal muscle,and the mitigation of mitochondrial dysfunction and ER stress.What’s more,selenoproteins inhibited DOS induced protein and lipid degradation and improved protein and lipid biosynthesis via regulating AKT/mTOR/S6K1 and AMPK/SREBP-1 signalling pathways in skeletal muscle.However,several parameters such as the activity of GSH-Px and T-SOD,the protein abundance of JNK2,CLPP,SELENOS and SELENOF did not show dose-dependent changes.Notably,several key selenoproteins such as MSRB1,SELENOW,SELENOM,SELENON and SELENOS play the unique roles during this protection.Conclusions Increased expression of selenoproteins by dietary OH-SeMet could synergistically alleviate mitochondrial dysfunction and ER stress,recover protein and lipid biosynthesis,thus alleviate skeletal muscle growth retardation.Our study provides preventive measure for OS-dependent skeletal muscle retardation in livestock husbandry. 展开更多
关键词 Dietary oxidative stress endoplasmic reticulum stress Growth retardation Mitochondrial dysfunction SELENOPROTEINS Skeletal muscle
下载PDF
Pterostilbene attenuates intrauterine growth retardation-induced colon inflamm tion in piglets by modulating endoplasmic reticulum stress and autophagy
13
作者 Yanan Chen Hao Zhang +3 位作者 Yue Li Shuli Ji Peilu Jia Tian Wang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第3期1118-1133,共16页
Background:Endoplasmic reticulum(ER)stress and autophagy are implicated in the pathophysiology of intestinal inflammation;however,their roles in intrauterine growth retardation(IUGR)-induced colon inflammation are unc... Background:Endoplasmic reticulum(ER)stress and autophagy are implicated in the pathophysiology of intestinal inflammation;however,their roles in intrauterine growth retardation(IUGR)-induced colon inflammation are unclear.This study explored the protective effects of natural stilbene pterostilbene on colon inflammation using the IUGR piglets and the tumor necrosis factor alpha(TNF-α)-treated human colonic epithelial cells(Caco-2)by targeting ER stress and autophagy.Results:Both the IUGR colon and the TNF-α-treated Caco-2 cells exhibited inflammatory responses,ER stress,and impaired autophagic flux(P<0.05).The ER stress inducer tunicamycin and the autophagy inhibitor 3-methyladenine further augmented inflammatory responses and apoptosis in the TNF-α-treated Caco-2 cells(P<0.05).Conversely,pterostilbene inhibited ER stress and restored autophagic flux in the IUGR colon and the TNF-α-treated cells(P<0.05).Pterostilbene also prevented the release of inflammatory cytokines and nuclear translocation of nuclear factor kappa B p65,reduced intestinal permeability and cell apoptosis,and facilitated the expression of intestinal tight junction proteins in the IUGR colon and the TNF-α-treated cells(P<0.05).Importantly,treatment with tunicamycin or autophagosome-lysosome binding inhibitor chloroquine blocked the positive effects of pterostilbene on inflammatory response,cell apoptosis,and intestinal barrier function in the TNF-α-exposed Caco-2 cells(P<0.05).Conclusion:Pterostilbene mitigates ER stress and promotes autophagic flux,thereby improving colon inflammation and barrier dysfunction in the IUGR piglets and the TNF-α-treated Caco-2 cells. 展开更多
关键词 Autophagic flux Colon inflammation endoplasmic reticulum stress Intrauterine growth retardation PIGLETS
下载PDF
Cryptotanshinone induces apoptosis of activated hepatic stellate cells via modulating endoplasmic reticulum stress
14
作者 Xiao-Xue Hou Yu-Wen Li +7 位作者 Jia-Li Song Wen Zhang Rui Liu Hui Yuan Tian-Tong Feng Zheng-Yi Jiang Wen-Ting Li Chuan-Long Zhu 《World Journal of Gastroenterology》 SCIE CAS 2023年第17期2616-2627,共12页
BACKGROUND Cryptotanshinone(CPT)has wide biological functions,including anti-oxidative,antifibrosis,and anti-inflammatory properties.However,the effect of CPT on hepatic fibrosis is unknown.AIM To investigate the effe... BACKGROUND Cryptotanshinone(CPT)has wide biological functions,including anti-oxidative,antifibrosis,and anti-inflammatory properties.However,the effect of CPT on hepatic fibrosis is unknown.AIM To investigate the effects of CPT treatment on hepatic fibrosis and its underlying mechanism of action.METHODS Hepatic stellate cells(HSCs)and normal hepatocytes were treated with different concentrations of CPT and salubrinal.The CCK-8 assay was used to determine cell viability.Flow cytometry was used to measure apoptosis and cell cycle arrest.Reverse transcription polymerase chain reaction(RT-PCR)and Western blot analyses were used to measure mRNA levels and protein expression of endoplasmic reticulum stress(ERS)signaling pathway related molecules,respectively.Carbon tetrachloride(CCL4)was used to induce in vivo hepatic fibrosis in mice.Mice were treated with CPT and salubrinal,and blood and liver samples were collected for histopathological examination.RESULTS We found that CPT treatment significantly reduced fibrogenesis by modulating the synthesis and degradation of the extracellular matrix in vitro.CPT inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in cultured HSCs.Furthermore,we found that CPT promoted apoptosis of activated HSCs by upregulating expression of ERS markers(CHOP and GRP78)and activating ERS pathway molecules(PERK,IRE1α,and ATF4),which were inhibited by salubrinal.Inhibition of ERS by salubrinal partially eliminated the therapeutic effect of CPT in our CCL4-induced hepatic fibrosis mouse model.CONCLUSION CPT can promote apoptosis of HSCs and alleviate hepatic fibrosis through modulating the ERS pathway,which represents a promising strategy for treating hepatic fibrosis. 展开更多
关键词 Hepatic fibrosis endoplasmic reticulum stress CRYPTOTANSHINONE Hepatic stellate cells APOPTOSIS
下载PDF
Targeting endoplasmic reticulum stress signaling in ovarian cancer therapy
15
作者 Tianqing Yan Xiaolu Ma +1 位作者 Lin Guo Renquan Lu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第10期748-764,共17页
The endoplasmic reticulum(ER),an organelle present in various eukaryotic cells,is responsible for intracellular protein synthesis,post-translational modification,and folding and transport,as well as the regulation of ... The endoplasmic reticulum(ER),an organelle present in various eukaryotic cells,is responsible for intracellular protein synthesis,post-translational modification,and folding and transport,as well as the regulation of lipid and steroid metabolism and Ca2+homeostasis.Hypoxia,nutrient deficiency,and a low pH tumor microenvironment lead to the accumulation of misfolded or unfolded proteins in the ER,thus activating ER stress(ERS)and the unfolded protein response,and resulting in either restoration of cellular homeostasis or cell death.ERS plays a crucial role in cancer oncogenesis,progression,and response to therapies.This article reviews current studies relating ERS to ovarian cancer,the most lethal gynecologic malignancy among women globally,and discusses pharmacological agents and possible targets for therapeutic intervention. 展开更多
关键词 endoplasmic reticulum stress unfolded protein response ovarian cancer targeted therapy
下载PDF
Endoplasmic Reticulum Stress-induced Endothelial Dysfunction Promotes Neointima Formation after Arteriovenous Grafts in Mice on High-fat Diet
16
作者 Yan-xia ZHONG Chen-chen ZHOU +6 位作者 Ying-fang ZHENG Hong-kai DAI Ren-yu CHEN Yu-rou WANG Cheng-ye ZHAN Jin-long LUO Ai-ni XIE 《Current Medical Science》 SCIE CAS 2023年第1期115-122,共8页
Objective Endothelial dysfunction is one candidate for triggering neointima formation after arteriovenous grafts(AVGs),but the factors mediating this process are unclear.The purpose of this study was to investigate th... Objective Endothelial dysfunction is one candidate for triggering neointima formation after arteriovenous grafts(AVGs),but the factors mediating this process are unclear.The purpose of this study was to investigate the role of endoplasmic reticulum stress(ERS)-induced endothelial dysfunction in neointima formation following AVGs in high-fat diet(HFD)mice.Methods CCAAT-enhancer-binding protein-homologous protein(CHOP)knockout(KO)mice were created.Mice were fed with HFD to produce HFD model.AVGs model were applied in the groups of WT ND,WT HFD,and CHOP KO HFD.Human umbilical vein endothelial cells(HUVECs)were cultured with oxidized low density lipoprotein(ox-LDL)(40 mg/L)for the indicated time lengths(0,6,12,24 h).ERS inhibitor tauroursodeoxycholic acid(TUDCA)was used to block ERS.Immunohistochemical staining was used to observe the changes of ICAM1.Changes of ERS were detected by real-time RT-PCR.Protein expression levels and ERS activation were detected by Western blotting.Endothellial cell function was determined by endothelial permeability assay and transendothelial migration assay.Results HFD increased neointima formation in AVGs associated with endothelial dysfunction.At the same time,ERS was increased in endothelial cells(ECs)after AVGs in mice consuming the HFD.In vitro,ox-LDL was found to stimulate ERS,increase the permeability of the EC monolayer,and cause endothelial dysfunction.Blocking ERS with TUDCA or CHOP siRNA reversed the EC dysfunction caused by ox-LDL.In vivo,knockout of CHOP(CHOP KO)protected the function of ECs and decreased neointima formation after AVGs in HFD mice.Conclusion Inhibiting ERS in ECs could improve the function of AVGs. 展开更多
关键词 endoplasmic reticulum stress endothelial dysfunction neointima formation arteriovenous grafts high-fat diet
下载PDF
Bushen Yizhi Formula regulates the IRE1αpathway to alleviate endoplasmic reticulum stress in an Alzheimer’s disease rat model
17
作者 XIRU XU YUAN FANG +5 位作者 BIAO ZHANG SHICHAO TENG XIANG WU JING ZHANG XIAOQUN GU MEIXIA MA 《BIOCELL》 SCIE 2023年第7期1595-1609,共15页
While the Bushen Yizhi Formula can treat Alzheimer’s disease(AD),the yet to be ascertained specific mechanism of action was explored in this work.Methods:Different concentrations of the Bushen Yizhi Formula and amylo... While the Bushen Yizhi Formula can treat Alzheimer’s disease(AD),the yet to be ascertained specific mechanism of action was explored in this work.Methods:Different concentrations of the Bushen Yizhi Formula and amyloid-beta peptide(Aβ)were used to treat rat pheochromocytoma cells(P12)and human neuroblastoma cells(SH-SY5Y).Cell morphological changes were observed to determine the in vitro cell damage.Cell Counting Kit(CCK)-8 assay and flow cytometry were employed to identify cell viability and apoptosis/cell cycle,respectively.Western blotting and immunohistochemistry were employed to measure the expressions of endoplasmic reticulum stress(ERS)-related proteins(GRP78 and CHOP),p-IRE1α,IRE1α,ASK1,p-JNK,JNK,Bax,Bcl-2,XBP-1,and Bim.Fura 2-acetoxymethyl ester(Fura-2/AM)was used to determine the intracellular calcium(Ca^(2+))concentration.Also,an AD model was constructed by injecting Aβinto the CA1 area of the hippocampus in Sprague Dawley rats.AD model rats were gavaged with different concentrations of Bushen Yizhi Formula for 14 consecutive days.The Morris water maze experiment was conducted to test the learning and memory of rats.Hematoxylin&Eosin(H&E)and Terminal-deoxynucleotidyl Transferase(TdT)-mediated dUTP Nick-End Labeling(TUNEL)staining were done to determine histopathological changes in the brain.Results:Bushen Yizhi Formula relieved the Aβ-induced effects including cell injury,decreased viability,increased apoptosis,G0/G1 phase cell cycle arrest,upregulation of GRP78,CHOP,p-IRE1α,p-JNK,Bax,XBP-1 and Bim,as well as down-regulation of Bcl-2.These results were also seen with IRE1αsilencing.While Aβsuppressed the learning and memory abilities of rats,the Bushen Yizhi Formula alleviated these effects of Aβ.Brain nerve cell injury induced by Aβcould also be treated with Bushen Yizhi Formula.Conclusion:Bushen Yizhi Formula could influence ERS through the IRE1αsignaling pathway to achieve its therapeutic effects on AD. 展开更多
关键词 Bushen Yizhi Formula Alzheimer’s disease endoplasmic reticulum stress IRE1α
下载PDF
Protective effect of lycopene on Parkinson's disease cell model based on endoplasmic reticulum stress
18
作者 BAO Bo CHAI Xing-xing +3 位作者 DENG Zi-liang LIU Lu-lu ZHU Shao-ping LI Li-li 《Journal of Hainan Medical University》 CAS 2023年第14期15-21,共7页
Objective:To evaluate the effect of lycopene on Parkinson's disease cell model and its possible mechanism.Methods:The SH-SY5Y cells were treated with 0.5μmol/L rotenone for 24 h to establish Parkinson's disea... Objective:To evaluate the effect of lycopene on Parkinson's disease cell model and its possible mechanism.Methods:The SH-SY5Y cells were treated with 0.5μmol/L rotenone for 24 h to establish Parkinson's disease cell model.The experiments were randomly divided into the control group,the lycopene group,the rotenone group,the pretreatment groups of different concentrations lycopene(low,medium,high concentration).Cell viability was detected by CCK-8 assay,the morphological changes of cells were observed under an inverted microscope,Hoechst staining was used to observe cell apoptosis,the expression and distribution of endoplasmic reticulum stress marker proteins GRP78 and CHOP in each group were detected by Western blot and cell immunofluorescence.Results:The study found that compared with the control group,the cell viability in the rotenone group was significantly decreased with obvious apoptosis;compared with the rotenone group,the cell viability of the lycopene pretreatment group was improved,and the difference was statistically significant(P<0.05);The apoptosis in the lycopene pretreatment group was decreased.The expression of GRP78 and CHOP in the rotenone group was significantly higher than that in the control group(P<0.01),while the expression of both in the high concentration lycopene pretreatment group was lower than that in the rotenone group(P<0.05).Conclusion:Lycopene pretreatment had a significant protective effect on rotenone-induced SH-SY5Y cells,which may be related to the fact that lycopene pretreatment can effectively alleviate endoplasmic reticulum stress in SH-SY5Y cells damaged by rotenone. 展开更多
关键词 LYCOPENE ROTENONE Parkinson's disease endoplasmic reticulum stress
下载PDF
The Role of Endoplasmic Reticulum Stress Sensor Protein CREB3L2 in the Development of Tissues and Tumors
19
作者 Ziwei Li Wenming Zhao +2 位作者 Jirui Sun Lingyan Wang Jinku Zhang 《Proceedings of Anticancer Research》 2023年第6期52-58,共7页
The endoplasmic reticulum plays an extremely important role in the process of cellular protein secretion.The cyclic AMP-responsive element-binding protein 3(CREB3)transcription factor family is closely associated with... The endoplasmic reticulum plays an extremely important role in the process of cellular protein secretion.The cyclic AMP-responsive element-binding protein 3(CREB3)transcription factor family is closely associated with the secretion and transport of proteins within the endoplasmic reticulum.As a member of the CREB3 transcription factor family,cyclic AMP-responsive element-binding protein 3-like protein 2(CREB3L2)stands out as a non-classical sensor within the endoplasmic reticulum.CREB3L2 can detect and regulate endoplasmic reticulum pressure,exert control over the processes of protein transport and secretion,participate in the development of tumor cells,and is also closely linked to the development of certain human tissues and organs.This article aims to review the role of CREB3L2 in tissue development and disease,shedding light on the related mechanisms of CREB3L2 in cancer development.The goal is to provide insights and directions for further analysis of CREB3L2. 展开更多
关键词 CREB3L2 endoplasmic reticulum stress sensor CREB3
下载PDF
Ulinastatin suppresses endoplasmic reticulum stress and apoptosis in the hippocampus of rats with acute paraquat poisoning 被引量:27
20
作者 Hai-feng Li Shi-xing Zhao +1 位作者 Bao-peng Xing Ming-li Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期467-472,共6页
Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, pr... Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had dis- appeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-medi- ated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraqnat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect. 展开更多
关键词 nerve regeneration PARAQUAT POISONING RATS endoplasmic reticulum stress APOPTOSIS ULINASTATIN CHOP GRP78 caspase-3 HIPPOCAMPUS reactive oxygen species neural regeneration
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部