期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Optimum Profiles of Endwall Contouring for Enhanced Net Heat Flux Reduction and Aerodynamic Performance 被引量:1
1
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期80-92,共13页
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish... Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization. 展开更多
关键词 endwall contouring turbine VANE heat transfer phantom cooling coolant injection net heat flux reduction aerodynamic performance
下载PDF
Optimization of endwall contouring in axial compressor S-shaped ducts 被引量:9
2
作者 Jin Donghai Liu Xiwu +1 位作者 Zhao Weiguang Gui Xingmin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1076-1086,共11页
This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The pla... This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The platform is constructed by integrating adaptive genetic algorithm(AGA), design of experiments(DOE), response surface methodology(RSM) based on the artificial neural network(ANN), and a 3D Navier–Stokes solver.The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function(response).Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss.The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid.The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%. 展开更多
关键词 Adaptive genetic algorithm(AGA) Artificial neural network(ANN) Corner separation Design of experiments(DOE) endwall contouring OPTIMIZATION Response surfacemethodology (RSM) S-shaped duct
原文传递
Investigation of Non-Axisymmetric Endwall Contouring in a Compressor Cascade 被引量:7
3
作者 LIU Xiwu JIN Donghai GUI Xingmin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第6期490-503,共14页
The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi-... The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS). 展开更多
关键词 Non-axisymmetric endwall contouring Compressor cascade Corner separation Wind tunnel experiments OPTIMIZATION
原文传递
Endwall aerodynamic losses from turbine components within gas turbine engines 被引量:4
4
作者 Phil Ligrani Geoffrey Potts Arshia Fatemi 《Propulsion and Power Research》 SCIE 2017年第1期1-14,共14页
A survey of research on aerodynamic loss investigations for turbine components of gas tuibine engines is presented.Experimental and numerically predicted results are presented from investigations undertaken over the p... A survey of research on aerodynamic loss investigations for turbine components of gas tuibine engines is presented.Experimental and numerically predicted results are presented from investigations undertaken over the past 65 plus years.Of particular interest are losses from the development of secondary flows from airfoil/endwall interactions.The most important of the airfoilAmdwall secondary flows are passage vortices,counter voitices,and corner vortices.The structure and development of these secondaiy flows are described as they affect aerodynamic perfonnance within and downstream of turbine passage flows in compressible,high speed flows with either subsonic or transonic Mach number distributions,as well as within low-speed,incompressible flows.Also discussed are methods of endwall contouring,and its consequences in regard to airfoil/endwall secondary flows. 展开更多
关键词 Aerodynamic losses Gas turbine engines Turbine components Airfoil/endwall interactions Secondary flows VORTICITY endwall contouring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部