The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T cond...The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.展开更多
BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark whi...BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.展开更多
Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosys...Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Rainfall event timing and magnitude are important drivers of ecosystem processes and are instrumental in creating land-scape heterogeneity in arid and semi-arid regions. Rainfall event characteristics were analyzed using an automatic tip-ping-bucket rain-gauge record across the entire summer monsoon season from 2008 to 2015 at the arid desert area of Shapotou in the Tengger Desert, China. Changing the minimum inter-event time (MIT) from 30 min to 24 h alters the number of rainfall events from 64 to 25 for the event depth larger than 0.1 mm. The mean rainfall intensity declined from 0.95 mm/h to 0.53 mm/h, and the geometric mean event duration rose from 0.55 h to 4.4 h. The number of rainfall events, mean rainfall intensity, and geometric mean event duration differed under different criteria of individual rainfall depths, except that for an individual rainfall depth of 0.5, 1.0, and 5.0 mm. The aforementioned features differed only at the lowest range of the mean rainfall intensity and depth for MIT=3 and 6 h. These findings suggest that identification of event-based rainfall in this specific arid region can be better achieved by setting the MIT at six hours. The wide variation in rainfall event properties indicate the need for paying more attention to the proper selection and reporting of event criteria in studies that adopt event-based data analysis. This is especially true in quantifying effective rainfall for soil water replenishment in terms of rainfall depth and intensity with infrequent rainfall events.展开更多
Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloo...Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloor topographic highs. Many gas hydrate exploration examples abroad also indicate that the saturation of gas hydrates was higher at seafloor topographic highs. This work aims to understand why gas hydrates accumulated at topographic highs and why their saturation is higher.展开更多
At present,the development and function research of lawn has become diversified,and the application of lawn has been extended from outdoor to indoor environment. The indoor lawn has functions of absorbing toxic and ha...At present,the development and function research of lawn has become diversified,and the application of lawn has been extended from outdoor to indoor environment. The indoor lawn has functions of absorbing toxic and harmful gases,releasing oxygen,increasing air humidity and regulating temperature. It can effectively improve the indoor air quality of northern areas,purify and beautify the home environment.This paper elaborated the purpose and significance of the application of new indoor lawn,the establishment methods of the indoor lawn,and the application design of the indoor lawn landscape.展开更多
The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water...The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.展开更多
-Variations of monsoon wind field in the sea area along the southeastern coast of China during the ENSO events and its influence on the sea level and sea surface temperature (SST) are explored mainly on the basis of t...-Variations of monsoon wind field in the sea area along the southeastern coast of China during the ENSO events and its influence on the sea level and sea surface temperature (SST) are explored mainly on the basis of the data of monthly mean wind at 850 hPa and five coastal stations during 1973-1987. The results from the analyses of the data and theoretical estimation show that the southwest wind anomalies appeared in the study area during the events, and northeast wind anomalies occurred in general before the events. With the coastline of the area being parallel basically to the direction of the wind, an Ekman transport will result in an accumulation of the water near the coast or a departure of the water from the coast. As a result , the sea level and SST there will be affected markedly. During the events, southwest wind will intensify in the summer, and northeast wind will weaken in the winter. Their total effect is that a large negative anomaly of the sea level and SST will occur. The estimations indicate that the monsoon wind is stronger in the summer and weaker in the winter than the normal by 1-1. 5 m/s during the events, and this anomaly will cause a decrease of the sea level by 7-11 cm . Changes of the wind field, therefore, is mainly responsible for a large negative anomalies of the sea level and SST there during the ENSO events.展开更多
Taking northern Jiangsu area as an example,economic disparity between urban and rural areas is described according to the data in 2000-2009 Jiangsu Statistical Yearbook.Result shows that there are significant differen...Taking northern Jiangsu area as an example,economic disparity between urban and rural areas is described according to the data in 2000-2009 Jiangsu Statistical Yearbook.Result shows that there are significant differences in the rural and urban economic development in less developed areas,which are mainly reflected in the differences in per capita income,living standard,and Engel coefficient.Reasons for urban and rural economic disparity in less developed areas are analyzed.The asymmetry and immobility of rural and urban resources have objectively caused the income gap between urban and rural residents;urban industrial development,which is faster than agricultural development,has widened the income gap between urban and rural residents;and the differences in comparative labor productivity in rural and urban areas have enlarged their income gap.Countermeasures to minimize the urban and rural economic development gap are put forward,such as deepening the reform,realizing the free flow of economic resources between urban and rural areas,developing rural areas through urban development,exerting the function of urban areas in the coordinated development of urban and rural areas,paying attention to the agriculture and rural areas,and improving the comparative labor productivity of agriculture.展开更多
Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan...Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan formations;the middle subgroup is formed by Yemahe, Wenshuihe and Shicaohe formations;the upper subgroup consists of Songziyuan and Wagangxi formations. Stromatolites developed very well in the carbonate rocks of each subgroup in Shennongjia Group. Based on descriptions of stromatolites macrotypes and their characteristics, this paper studied the formation environments, discussed the relationship among types, sizes, abundance of stromatolites and sedimentary environment, and established the formation and development pattern of stromatolites. As a result, this research also reveals the paleoenvironment and paleoclimate during the period of the Shennongjia Group deposited, which is beneficial to the study of paleoenvironment, paleogeography and paleoclimate, stratigraphic succession and regional correlation of the northern edge of Yangtze block. Stromatolites of Shennongjia Group are mainly conical, columnar, domal, wavy, stratiform and stromatolite reefs. The columnar and conical stromatolites are well developed. Conical stromatolites are mainly monomers, with a variety of pyramidal types, ranging in diameter from a few millimeters to several meters and formed in the high energy subtidal zone and tidal lagoon environment. Most of the columnar stromatolites are medium to small sizes implied a wide and gentle slope environment at that time. Stratiform (including wavy) stromatolites are larger scales and extends far away and distributed most widely in almost every horizon in the carbonate rocks. Stratiform stromatolites can be formed in low energy environments such as subtidal and intertidal zones and supratidal belts. Wavy stromatolites often developed in the hydrodynamic energy condition from weak energy intertidal zone gradually strengthened to the below of the high energy supratidal. Although stromatolite reefs can be a single or multiform combination, they developed mainly consisted of laminar or small walled columnar and large domal stromatolites. Shicaohe Formation also partially developed large domical stromatolites, the depositional environment is from the upper intertidal to supratidal zone. Stromatolite in Shennongjia Group usually appears as a combination of “Stratiform (wavy)-dome-columnar-coniform ” or “stratiform-dome-coniform-columnar-dome-stratiform ” vertieally, which represents the seawater depth from shallower to deeper or from shallow to deep and then to shallow again. These phenomenons generally reflected a stable sea level and companied with a high frequency oscillation. Comprehensive researches on the stratigraphy, sedimentary facies, sedimentary environment and the stromatolite types and their characteristics in the Shennongjia Group indicated that the Shennongjia Area is located on a gentle slope of carbonate platform in the passive continental edge, generally, i.e., one of warm and humid climate shallow water zone or/and a cold-drought climate, and had been experienced with eustatic cycles during the Shennongjia Group deposited.展开更多
Using the fuzzy clustering as the principal method, eight water masses in the northern South China Sea (NSCS) are distinguished. They are Alongshore Diluted Water Mass (F), Nearshore Mixed Water Mass (M), Warm Surface...Using the fuzzy clustering as the principal method, eight water masses in the northern South China Sea (NSCS) are distinguished. They are Alongshore Diluted Water Mass (F), Nearshore Mixed Water Mass (M), Warm Surface Water Mass(WS), Surface Water Mass(S), Surface-Subsurface Mixed Water Mass(SU), Subsurface Water Mass (U), Subsurface-Intermediate Water Mass (UI) and Intermediate Water Mass (1). A synthertic study is made on the formations, basic properties and modified characters of each water mass and the regularities of their disributions and growth and decline variations . They may be classified into three types; the type of runoff-diluted water (F). the type of shallow sea-modified water (M, WS. S. and SU) and the type of deep sea-oceanic water (U, UI, and I).展开更多
The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu...The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu gas hydrate field(site SH5)offer a valuable opportunity to study the relations between submarine slope failure and hydrocarbon accumulation and flow that is associated with a~2 kmdiameter gas chimney developed beneath site SH5 where none gas hydrates had been recovered by drilling and sampling despite the presence of distinct bottom simulating reflectors(BSRs)and favorable gas hydrate indication.The mechanism of submarine slope failure resulted from buoyancy extrusion and seepage-derived deformation which were caused by overpressure from a~1100 m-high gas column in a gas chimney was studied via numerical simulation.The~9.55 MPa overpressure caused by hydrocarbons that migrated through the gas chimney and then accumulated beneath subsurface gas hydratebearing impermeable sediments.This may have resulted in a submarine slope failure,which disequilibrated the gas hydrate-bearing zone and completely decomposed the gas hydrate once precipitated at site SH5.Before the gas hydrate decomposition,the largely impermeable sediments overlying the gas chimney may have undergone a major upward deformation due to the buoyancy extrusion of the overpressure in the gas chimney,and slope failure was initiated from plastic strain of the sediments and reduced internal strength.Slope failure subsequently resulted in partial gas hydrate decomposition and sediment permeability increase.The pressurized gas in the gas chimney may have diffused into the overlying sediments controlled by seepage-derived deformation,causing an effective stress reduction at the base of the sediments and significant plastic deformation.This may have formed a new cycle of submarine slope failure and finally the total gas hydrate dissociation.The modeling results of buoyancy extrusion and seepage-derived deformation of the overpressure in the gas chimney would provide new understanding in the development of submarine slope failure and the link between slope failure and gas hydrate accumulation and dissociation.展开更多
Taking three counties in northern Jiangsu (Suining,Ganyu and Sihong) as the respondents,the economic principles of food safety issues of rural areas in northern Jiangsu are described from three aspects which are infor...Taking three counties in northern Jiangsu (Suining,Ganyu and Sihong) as the respondents,the economic principles of food safety issues of rural areas in northern Jiangsu are described from three aspects which are information asymmetry,food supply and food safety issue and food consumption and food safety issue.From the two aspects-adverse selection of consumers and opportunistic behavior of producers,the paper introduces the influence of food safety issues of rural areas in northern Jiangsu.Based on the above analysis,economic theories for solving food safety issues of rural areas in northern Jiangsu are put forward:First,improve consumers' knowledge of food safety;Second,normalize the behavior of main bodies of production and management;Third,improve the current situation of information asymmetry of food safety;Fourth,accelerate economic construction of rural areas in northern Jiangsu,practically increase peasant income and living standard.展开更多
基金supported by the National Natural Science Foundation of China (grants No.41576048,41202080 and 41176052)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) (grant No.PLC201402)+1 种基金the Youth Innovation Promotion Association CAS (2016312)the Scientific Cooperative Project by CNPC and CAS (2015A-4813)
文摘The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.
基金supported by the National 973 Basic Research Program (Grant No. 2009CB219502)National Natural Science Foundation of China (Grant No. 41072084)
文摘BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.
基金funded by the National Natural Science Foundation of China (Grant Nos. 41530750, 41501108 and 41371101)
文摘Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Rainfall event timing and magnitude are important drivers of ecosystem processes and are instrumental in creating land-scape heterogeneity in arid and semi-arid regions. Rainfall event characteristics were analyzed using an automatic tip-ping-bucket rain-gauge record across the entire summer monsoon season from 2008 to 2015 at the arid desert area of Shapotou in the Tengger Desert, China. Changing the minimum inter-event time (MIT) from 30 min to 24 h alters the number of rainfall events from 64 to 25 for the event depth larger than 0.1 mm. The mean rainfall intensity declined from 0.95 mm/h to 0.53 mm/h, and the geometric mean event duration rose from 0.55 h to 4.4 h. The number of rainfall events, mean rainfall intensity, and geometric mean event duration differed under different criteria of individual rainfall depths, except that for an individual rainfall depth of 0.5, 1.0, and 5.0 mm. The aforementioned features differed only at the lowest range of the mean rainfall intensity and depth for MIT=3 and 6 h. These findings suggest that identification of event-based rainfall in this specific arid region can be better achieved by setting the MIT at six hours. The wide variation in rainfall event properties indicate the need for paying more attention to the proper selection and reporting of event criteria in studies that adopt event-based data analysis. This is especially true in quantifying effective rainfall for soil water replenishment in terms of rainfall depth and intensity with infrequent rainfall events.
基金funded by the National Natural Science Foundation of China(grants No.41406080,41273066 and 41106060)
文摘Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloor topographic highs. Many gas hydrate exploration examples abroad also indicate that the saturation of gas hydrates was higher at seafloor topographic highs. This work aims to understand why gas hydrates accumulated at topographic highs and why their saturation is higher.
基金Supported by Student Innovation and Entrepreneurship Training Program Project of Heilongjiang Bayi Agricultural University(XC2017014)Daqing City Guiding Science and Technology Plan Project(zd-2017-69)
文摘At present,the development and function research of lawn has become diversified,and the application of lawn has been extended from outdoor to indoor environment. The indoor lawn has functions of absorbing toxic and harmful gases,releasing oxygen,increasing air humidity and regulating temperature. It can effectively improve the indoor air quality of northern areas,purify and beautify the home environment.This paper elaborated the purpose and significance of the application of new indoor lawn,the establishment methods of the indoor lawn,and the application design of the indoor lawn landscape.
基金Supported by the Science and Technology Project of CNOOC Ltd.(YXKY-2012-SHENHAI-01)China National Science and Technology Major Project(2011ZX05025-003+1 种基金 2016ZX05026-003)the National Natural Science Foundation of China(91128207)
文摘The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.
文摘-Variations of monsoon wind field in the sea area along the southeastern coast of China during the ENSO events and its influence on the sea level and sea surface temperature (SST) are explored mainly on the basis of the data of monthly mean wind at 850 hPa and five coastal stations during 1973-1987. The results from the analyses of the data and theoretical estimation show that the southwest wind anomalies appeared in the study area during the events, and northeast wind anomalies occurred in general before the events. With the coastline of the area being parallel basically to the direction of the wind, an Ekman transport will result in an accumulation of the water near the coast or a departure of the water from the coast. As a result , the sea level and SST there will be affected markedly. During the events, southwest wind will intensify in the summer, and northeast wind will weaken in the winter. Their total effect is that a large negative anomaly of the sea level and SST will occur. The estimations indicate that the monsoon wind is stronger in the summer and weaker in the winter than the normal by 1-1. 5 m/s during the events, and this anomaly will cause a decrease of the sea level by 7-11 cm . Changes of the wind field, therefore, is mainly responsible for a large negative anomalies of the sea level and SST there during the ENSO events.
文摘Taking northern Jiangsu area as an example,economic disparity between urban and rural areas is described according to the data in 2000-2009 Jiangsu Statistical Yearbook.Result shows that there are significant differences in the rural and urban economic development in less developed areas,which are mainly reflected in the differences in per capita income,living standard,and Engel coefficient.Reasons for urban and rural economic disparity in less developed areas are analyzed.The asymmetry and immobility of rural and urban resources have objectively caused the income gap between urban and rural residents;urban industrial development,which is faster than agricultural development,has widened the income gap between urban and rural residents;and the differences in comparative labor productivity in rural and urban areas have enlarged their income gap.Countermeasures to minimize the urban and rural economic development gap are put forward,such as deepening the reform,realizing the free flow of economic resources between urban and rural areas,developing rural areas through urban development,exerting the function of urban areas in the coordinated development of urban and rural areas,paying attention to the agriculture and rural areas,and improving the comparative labor productivity of agriculture.
基金This research was co-supported by the National Key Research and Development Program of China (2016YFC0601001),the National Natural Science Foundation of China (41472082)China Geological Survey Projects (DD20160120-01)+1 种基金Globe Geopark of Shennongjia. We are grateful to the leaders of Shennongjia National Park and Mr. Zhixian Wang,Quan Zhong gave great assistances and warmly aidsthe field survey was under careful direction by Mr. Lesheng Qu from Hubei Geological Survey,Mr. Yuansheng Geng from Institute of Geology,CAGS. Sincere thanks are also given Mr. Zejiu Wang,Xin Shang and Mrs. Xiulan Ma from Chinese Academy of Geological Sciences (CAGS) and All China Commission of Stratigraphy.
文摘Mesoproterozoic Shennongjia Group in Shennongjia Area can be divided into three subgroups in ascender order. Of which the lower subgroup includes Yingwodong, Dayanping, Macaoyuan, Luanshigou, Dawokeng and Kuangshishan formations;the middle subgroup is formed by Yemahe, Wenshuihe and Shicaohe formations;the upper subgroup consists of Songziyuan and Wagangxi formations. Stromatolites developed very well in the carbonate rocks of each subgroup in Shennongjia Group. Based on descriptions of stromatolites macrotypes and their characteristics, this paper studied the formation environments, discussed the relationship among types, sizes, abundance of stromatolites and sedimentary environment, and established the formation and development pattern of stromatolites. As a result, this research also reveals the paleoenvironment and paleoclimate during the period of the Shennongjia Group deposited, which is beneficial to the study of paleoenvironment, paleogeography and paleoclimate, stratigraphic succession and regional correlation of the northern edge of Yangtze block. Stromatolites of Shennongjia Group are mainly conical, columnar, domal, wavy, stratiform and stromatolite reefs. The columnar and conical stromatolites are well developed. Conical stromatolites are mainly monomers, with a variety of pyramidal types, ranging in diameter from a few millimeters to several meters and formed in the high energy subtidal zone and tidal lagoon environment. Most of the columnar stromatolites are medium to small sizes implied a wide and gentle slope environment at that time. Stratiform (including wavy) stromatolites are larger scales and extends far away and distributed most widely in almost every horizon in the carbonate rocks. Stratiform stromatolites can be formed in low energy environments such as subtidal and intertidal zones and supratidal belts. Wavy stromatolites often developed in the hydrodynamic energy condition from weak energy intertidal zone gradually strengthened to the below of the high energy supratidal. Although stromatolite reefs can be a single or multiform combination, they developed mainly consisted of laminar or small walled columnar and large domal stromatolites. Shicaohe Formation also partially developed large domical stromatolites, the depositional environment is from the upper intertidal to supratidal zone. Stromatolite in Shennongjia Group usually appears as a combination of “Stratiform (wavy)-dome-columnar-coniform ” or “stratiform-dome-coniform-columnar-dome-stratiform ” vertieally, which represents the seawater depth from shallower to deeper or from shallow to deep and then to shallow again. These phenomenons generally reflected a stable sea level and companied with a high frequency oscillation. Comprehensive researches on the stratigraphy, sedimentary facies, sedimentary environment and the stromatolite types and their characteristics in the Shennongjia Group indicated that the Shennongjia Area is located on a gentle slope of carbonate platform in the passive continental edge, generally, i.e., one of warm and humid climate shallow water zone or/and a cold-drought climate, and had been experienced with eustatic cycles during the Shennongjia Group deposited.
基金This project is supported by the National Natural Science Foundation of China.
文摘Using the fuzzy clustering as the principal method, eight water masses in the northern South China Sea (NSCS) are distinguished. They are Alongshore Diluted Water Mass (F), Nearshore Mixed Water Mass (M), Warm Surface Water Mass(WS), Surface Water Mass(S), Surface-Subsurface Mixed Water Mass(SU), Subsurface Water Mass (U), Subsurface-Intermediate Water Mass (UI) and Intermediate Water Mass (1). A synthertic study is made on the formations, basic properties and modified characters of each water mass and the regularities of their disributions and growth and decline variations . They may be classified into three types; the type of runoff-diluted water (F). the type of shallow sea-modified water (M, WS. S. and SU) and the type of deep sea-oceanic water (U, UI, and I).
基金supported by the National Natural Science Foundation of China(No.41776056)Open Found of Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences)+2 种基金Ministry of Education(No.TPR-2020-06)the China National Hydrate Project(DD20190217)China Postdoctoral Science Foundation(No.2017M622655)。
文摘The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu gas hydrate field(site SH5)offer a valuable opportunity to study the relations between submarine slope failure and hydrocarbon accumulation and flow that is associated with a~2 kmdiameter gas chimney developed beneath site SH5 where none gas hydrates had been recovered by drilling and sampling despite the presence of distinct bottom simulating reflectors(BSRs)and favorable gas hydrate indication.The mechanism of submarine slope failure resulted from buoyancy extrusion and seepage-derived deformation which were caused by overpressure from a~1100 m-high gas column in a gas chimney was studied via numerical simulation.The~9.55 MPa overpressure caused by hydrocarbons that migrated through the gas chimney and then accumulated beneath subsurface gas hydratebearing impermeable sediments.This may have resulted in a submarine slope failure,which disequilibrated the gas hydrate-bearing zone and completely decomposed the gas hydrate once precipitated at site SH5.Before the gas hydrate decomposition,the largely impermeable sediments overlying the gas chimney may have undergone a major upward deformation due to the buoyancy extrusion of the overpressure in the gas chimney,and slope failure was initiated from plastic strain of the sediments and reduced internal strength.Slope failure subsequently resulted in partial gas hydrate decomposition and sediment permeability increase.The pressurized gas in the gas chimney may have diffused into the overlying sediments controlled by seepage-derived deformation,causing an effective stress reduction at the base of the sediments and significant plastic deformation.This may have formed a new cycle of submarine slope failure and finally the total gas hydrate dissociation.The modeling results of buoyancy extrusion and seepage-derived deformation of the overpressure in the gas chimney would provide new understanding in the development of submarine slope failure and the link between slope failure and gas hydrate accumulation and dissociation.
基金Supported by Practice Innovation Training Project of Undergraduates of Universities and Colleges of Jiangsu Province in 2009
文摘Taking three counties in northern Jiangsu (Suining,Ganyu and Sihong) as the respondents,the economic principles of food safety issues of rural areas in northern Jiangsu are described from three aspects which are information asymmetry,food supply and food safety issue and food consumption and food safety issue.From the two aspects-adverse selection of consumers and opportunistic behavior of producers,the paper introduces the influence of food safety issues of rural areas in northern Jiangsu.Based on the above analysis,economic theories for solving food safety issues of rural areas in northern Jiangsu are put forward:First,improve consumers' knowledge of food safety;Second,normalize the behavior of main bodies of production and management;Third,improve the current situation of information asymmetry of food safety;Fourth,accelerate economic construction of rural areas in northern Jiangsu,practically increase peasant income and living standard.