期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
3D direct writing and micro detonation of CL-20 based explosive ink containing O/W emulsion binder 被引量:6
1
作者 Zhan-xiong Xie Chong-wei An +4 位作者 Bao-yun Ye Jia-qing Mu Chun-yan Li Min-jie Li Song-jin Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1340-1348,共9页
The booming development of DIW technology present an unprecedented prospect in energetic materials field and has attracted great interest due to its relative simplicity and high flexibility of manufacturing.Herein,a n... The booming development of DIW technology present an unprecedented prospect in energetic materials field and has attracted great interest due to its relative simplicity and high flexibility of manufacturing.Herein,a novel CL-20 based explosive ink formulation have been developed successfully for MEMS initiation systems via DIW technology.We designed PVA/GAP into an oil-in-water(O/W)emulsion,in the way that the aqueous solution of PVA as water phase,the ethyl acetate solution of GAP as oil phase,the combination of Tween 80 and SDS as emulsifier,BPS as a curing agent of GAP.The ideal formulation with good shear-thinning rheology properties and clear gel point was prepared using only 10 wt%emulsion.The dual-cured network formed during the curing process made the printed sample have good mechanical properties.The printed samples had satisfactory molding effect without cracks or fractures,the crystal form of CL-20 not changed and the thermal stability have improved.Deposition of explosive inks via DIW in micro-scale grooves had excellent detonation performances,which critical detonation size was 1×0.045 mm,detonation velocity was 7129 m/s and when the corner reaching 150°can still detonated stably.This study may open new avenues for developing binder systems in explosive ink formulations. 展开更多
关键词 Direct writing Explosive ink Emulsion binder system CL-20 based energetic composites Micron detonation
下载PDF
Structural Basis for Complementary and Alternative Medicine:Phytochemical Interaction with Non-Structural Protein 2 Protease-A Reverse Engineering Strategy
2
作者 G.Koushik Kumar G.Prasanna +1 位作者 T.Marimuthu N.T.Saraswathi 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2015年第6期445-452,共8页
Objective: To understand the druggability of the bioactive compounds from traditional herbal formulations "Nilavembu Kudineer" and "Swasthya Raksha Amruta Peya" to heal chikungunya virus (CHIKV) infection. Meth... Objective: To understand the druggability of the bioactive compounds from traditional herbal formulations "Nilavembu Kudineer" and "Swasthya Raksha Amruta Peya" to heal chikungunya virus (CHIKV) infection. Methods: The efficiency of twenty novel chemical entities from "Nilavembu Kudineer" and "Swasthya Raksha Amruta Peya" to inhibit CHIKV infection in silico were evaluated. Ligands were prepared using Ligprep module of Schr0dinger. Active site was identified using SiteMap program. Grid box was generated using receptor grid generation wizard. Molecular docking was carried out using Grid Based Ligand Docking with Energetics (GLIDE) program. Results: Molecular docking studies showed that among twenty compounds, andrographoside, deoxyandrographoside, neoandrographolide, 14-deoxy-11-oxoandrographolide, butoxone and oleanolic acid showed GLIDE extra precision (XP) score of-9.10,-8.72, -8.25,-7.38,-7.28 and -7.01, respectively which were greater than or comparable with chloroquine (reference compound) XP score (-7.08) and were found to interact with the key residues GLLI 1043, LYS 1045, GLY 1176, LEU 1203, HIS 1222 and LYS 1239 which were characteristic functional unit crucial for replication of CHIKV. Conclusion: The binding affinity and the binding mode of chemical entities taken from herbal formulations with non-structural protein 2 protease were understood and our study provided a novel strategy in the development and design of drugs for CHIKV infection. 展开更多
关键词 chikungunya virus non-structural protein 2 protease Grid based Ligand Docking with energetics score Nilavembu Kudineer Swasthya Raksha Amruta Peya
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部