Design of energetic materials is an exciting area in mechanics and materials science. Energetic composite materials are used as propellants, explosives, and fuel cell components. Energy release in these materials are ...Design of energetic materials is an exciting area in mechanics and materials science. Energetic composite materials are used as propellants, explosives, and fuel cell components. Energy release in these materials are accompanied by extreme events: shock waves travel at typical speeds of several thousand meters per second and the peak pressures can reach hundreds of gigapascals. In this paper, we develop a reactive dynamics code for modeling detonation wave features in one such material. The key contribution in this paper is an integrated algorithm to incorporate equations of state, Arrhenius kinetics, and mixing rules for particle detonation in a Taylor-Calerkin finite element simulation. We show that the scheme captures the distinct features of detonation waves, and the detonation velocity compares well with experiments reported in literature.展开更多
In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-lay...In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first.Moreover,the finite element models of the PCB with different thickness by stacking various number of layers were discussed.In addition to changing thickness,the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement.The non-linear material property of copper foil was considered in the analysis.The results indicated that a thicker PCB has lower stress in the copper foil in PCBs under the shock loading.The stress difference between the thicker PCB(2.6 mm)and thinner PCB(0.6 mm)is around 5%.Using woven carbon fiber/epoxy as core material could lower the stress of copper foil around 6.6%under the shock loading 1500 g for the PCB with 0.6 mm thickness.On the other hand,the stress level is under the failure strength of PCBs with carbon fiber/epoxy core layers and thickness 2.6 mm when the peak acceleration changes from 1500 g to 5000 g.This study could provide a reference for the design and proper applications of the PCB with different thickness and composite materials.展开更多
A ladle shroud is one of the functional refractories for continuous casting,which undergoes severe thermal shock by molten steel when used without pre-heating.The composite ladle shroud with an insulating liner presen...A ladle shroud is one of the functional refractories for continuous casting,which undergoes severe thermal shock by molten steel when used without pre-heating.The composite ladle shroud with an insulating liner presents excellent thermal shock resistance.Finite element simulation is an effective method to explore the maximum thermal stress for predicting the thermal shock resistance of ladle shrouds.In this paper,the influence of the lining materials and the structure of ladle shrouds on the thermal stress distribution is systematically researched.The working mechanism of the lining material on the body material is also presented.Lining materials with low thermal expansion,elastic modulus and thermal conductivity are helpful to improve the thermal shock resistance and an optimum lining thickness is suggested.The lining material can both serve as thermal resistance for the body material to buffer the thermal stress,and apply a strain load to the body material by the thermal strain to increase the stress.展开更多
基金supported by the National Science Foundation Graduate Research Fellowship Program(DGE1256260)The Defense Threat Reduction Agency(HDTRA1-31-1-0009)
文摘Design of energetic materials is an exciting area in mechanics and materials science. Energetic composite materials are used as propellants, explosives, and fuel cell components. Energy release in these materials are accompanied by extreme events: shock waves travel at typical speeds of several thousand meters per second and the peak pressures can reach hundreds of gigapascals. In this paper, we develop a reactive dynamics code for modeling detonation wave features in one such material. The key contribution in this paper is an integrated algorithm to incorporate equations of state, Arrhenius kinetics, and mixing rules for particle detonation in a Taylor-Calerkin finite element simulation. We show that the scheme captures the distinct features of detonation waves, and the detonation velocity compares well with experiments reported in literature.
基金the support from Ministry of Science and Technology,Taiwan,R.O.C.,through grant MOST-105-2221-E-007-031-MY3.
文摘In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first.Moreover,the finite element models of the PCB with different thickness by stacking various number of layers were discussed.In addition to changing thickness,the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement.The non-linear material property of copper foil was considered in the analysis.The results indicated that a thicker PCB has lower stress in the copper foil in PCBs under the shock loading.The stress difference between the thicker PCB(2.6 mm)and thinner PCB(0.6 mm)is around 5%.Using woven carbon fiber/epoxy as core material could lower the stress of copper foil around 6.6%under the shock loading 1500 g for the PCB with 0.6 mm thickness.On the other hand,the stress level is under the failure strength of PCBs with carbon fiber/epoxy core layers and thickness 2.6 mm when the peak acceleration changes from 1500 g to 5000 g.This study could provide a reference for the design and proper applications of the PCB with different thickness and composite materials.
基金the National Key R&D Program of China(2017YFB0304000)the National Natural Science Foundation of China(51772277 and 51372231).
文摘A ladle shroud is one of the functional refractories for continuous casting,which undergoes severe thermal shock by molten steel when used without pre-heating.The composite ladle shroud with an insulating liner presents excellent thermal shock resistance.Finite element simulation is an effective method to explore the maximum thermal stress for predicting the thermal shock resistance of ladle shrouds.In this paper,the influence of the lining materials and the structure of ladle shrouds on the thermal stress distribution is systematically researched.The working mechanism of the lining material on the body material is also presented.Lining materials with low thermal expansion,elastic modulus and thermal conductivity are helpful to improve the thermal shock resistance and an optimum lining thickness is suggested.The lining material can both serve as thermal resistance for the body material to buffer the thermal stress,and apply a strain load to the body material by the thermal strain to increase the stress.