Deeply trapped energetic ions can destabilize the internal kink mode with both high and low frequencies with a potato-orbit limit in the EAST-like tokamaks. The threshold beta value of the deeply trapped energetic ion...Deeply trapped energetic ions can destabilize the internal kink mode with both high and low frequencies with a potato-orbit limit in the EAST-like tokamaks. The threshold beta value of the deeply trapped energetic ions, the real frequency, and the growth rate of the internal kink mode are predicted in this paper.展开更多
Resonant magnetic perturbations(RMPs) are extensively applied to mitigate or suppress the edge localized mode in tokamak plasmas, but will break the axisymmetric magnetic field configuration and increase the loss of e...Resonant magnetic perturbations(RMPs) are extensively applied to mitigate or suppress the edge localized mode in tokamak plasmas, but will break the axisymmetric magnetic field configuration and increase the loss of energetic ions. The mechanism of RMPs induced energetic ion loss has been extensively studied, and is mainly attributed to resonant effects. In this paper,in the perturbed non-axisymmetric tokamak pedestal, we analytically derive the equations of guiding center motion for energetic ions including the bounce/transit averaged radial drift velocity and the toroidal precession frequency modified by strong radial electric field. The loss time of energetic ions is numerically solved and its parametric dependence is analyzed in detail.We find that passing energetic ions cannot escape from the plasma, while deeply trapped energetic ions can escape from the plasma. The strong radial electric field plays an important role in modifying the toroidal precession frequency and resulting in the drift loss of trapped energetic ions. The loss time of trapped energetic ions is much smaller than the corresponding slowdown time in DIII-D pedestal. This indicates that the loss of trapped energetic ions in the perturbed non-axisymmetric pedestal is important, especially for the trapped energetic ions generated by perpendicular neutral beam injection.展开更多
The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current...The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current are studied via particle-in-cell simulations. It is found that the energetic ions and background ions can be treated separately as different species, and they satisfy their individual Bohm criterion at the sheath edge. It is shown that the energetic ions can significantly affect the ion saturation current if their concentration is greater than root T-e/(gamma T-i2(i2)), where T-e is the electron temperature, and gamma(i2) and T-i2 represent the polytropic coefficient and temperature of energetic ions, respectively. As a result, the floating potential and the I-V characteristic profile are strongly influenced by the energetic ions. When the energetic ion current dominates the ion saturation current, an analysis of the ion saturation current will yield the energetic ion temperature rather than the electron temperature.展开更多
A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at...A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at 300℃ and i dpa, at 400℃. MicrostructurM changes are investigated in detail by transmission electron microscopy with cross-section technique. Interstitial defects and defect dusters induced by Fe-ion irradiation are observed in ali the specimens under different conditions. It is found that with increasing irradiation temperature, size of defect clusters increases while the density drops quickly. The results of element chemical mapping from the STEM images indicate that the Si element enrichment and Ta element depletion occur inside the precipitates in the matrix of SIMP steel irradiated to a dose of 1 dpa at 300℃. Correlations between the microstructure and irradiation conditions are briefly discussed.展开更多
During ion cyclotron resonance heating,the sheath power dissipation caused by ion acceleration in the radio frequency(RF)sheath is one of the main causes of RF power loss in the tokamak edge region.To estimate the pow...During ion cyclotron resonance heating,the sheath power dissipation caused by ion acceleration in the radio frequency(RF)sheath is one of the main causes of RF power loss in the tokamak edge region.To estimate the power dissipation of an RF sheath in the ion cyclotron range of frequency(ICRF),a 1 D fluid model for the multi-component plasma sheath driven by a sinusoidal disturbance current in the ICRF is presented.By investigation of the sheath potential and ion flux at the wall,it is shown that the larger frequency and lower amplitude of the disturbance current can cause smaller sheath power dissipation.The effect of the energetic ion on the sheath power dissipation depends on the disturbance current.For large amplitude of disturbance current,the increase in the concentration and energy of the energetic ion leads to a decrease in sheath power dissipation.While for a small disturbance current,the sheath power dissipation demonstrates non-monotonic variation with the concentration and energy of the energetic ion.In addition,the sheath power dissipation is found to have a small increase in the presence of light impurity ions with low valence.展开更多
Y1.6Ca1.4V 0.45Sn0.5Fe4.05O12 is irradiated by 0.56 GeV carbon ion. The irradiation effect is investigated by Mossbauer spectroscopy. The irradiation results in an isotropic distribution of the hyperfine magnetic fiel...Y1.6Ca1.4V 0.45Sn0.5Fe4.05O12 is irradiated by 0.56 GeV carbon ion. The irradiation effect is investigated by Mossbauer spectroscopy. The irradiation results in an isotropic distribution of the hyperfine magnetic field. The hyperfine magnetic fields decrease after the irradiation due to the change of supertransferred field. After the irradiation, the chain Fe(a)-oxygen-Fe(d) become longer and it leads to decrease of the supertransferred field.展开更多
This paper presents numerous physical characteristics of Ca, V, Sn doped yttrium iron garnet (CaVSn:YIG) irradiated with 0.56GeV carbon ions delivered by the Heavy Ion Research Facility of Lanzhou (HIRFL). The reason...This paper presents numerous physical characteristics of Ca, V, Sn doped yttrium iron garnet (CaVSn:YIG) irradiated with 0.56GeV carbon ions delivered by the Heavy Ion Research Facility of Lanzhou (HIRFL). The reason for change of the magnetic properties of the samples induced by energetic carbon ions bombardment is discussed. By comparison of this results with the irradiation effects of YIG induced by energetic argon, krypton and xenon obtained on the GANIL, Caen,France, it is concluded that the irradiation effect of 0.56 GeV C6+ on CaVSn.YIG arises from the electronic energy losses.展开更多
Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more ...Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more chances to get damaged images. Not only atomic structures of the original surface, but also arrangements on the elevated regions even at the bottom of the craters are clearly shown in the STM images. In general, there is a one-to-one correlation between the number of ion impacts and the number of craters.展开更多
Comprehensive records are available in ENA data of ring current activity recorded by the NUADU instrument aboard TC-2 on 15 May, 2005 during a major magnetic storm (which incorporated a series of substorms). Ion flu...Comprehensive records are available in ENA data of ring current activity recorded by the NUADU instrument aboard TC-2 on 15 May, 2005 during a major magnetic storm (which incorporated a series of substorms). Ion fluxes at 4-min temporal resolution derived from ENA data in the energy ranges 50-81 and 81-158 keV are compared with in situ particle fluxes measured by the LANL-SOPA instruments aboard LANL-01, LANL-02, LANL-97, and LANL-84 (a series of geostationary satellites that encircle the equatorial plane at -6.6 RE). Also, magnetic fields measured simultaneously by the magetometers aboard GOES-10 and GOES-12 (which are also geostationary satellites) are compared with the particle data. It is demonstrated that ion fluxes in the ring current were enhanced during geomagnetic field tailward stretching in the growth phases of substorms rather than after Earthward directed dipolarization events. This observation, which challenges the existing concept that ring current particles are injected Earthward from the magnetotail following dipolarization events, requires further investigation using a large number of magnetic storm events.展开更多
During February 15–16, 2014, the energetic electron spectrogram for four successive inner radiation belt crossing show clearly the electron zebra structures and their time evolution which last for about 17 h. Unfortu...During February 15–16, 2014, the energetic electron spectrogram for four successive inner radiation belt crossing show clearly the electron zebra structures and their time evolution which last for about 17 h. Unfortunately, the time of flight(TOF) in RBSPICE measurement is turned off below 3 RE, and the ion measurement is contaminated by electrons. Thus in this study we studied the differences between the ion and electron zebra stripe structures and their time evolution using simple theory and test particle simulation, combining the electron measurement from RBSIPICE onboard Van Allen Probes. Theoretical analysis predicts that the ion zebra stripe structures should lie at a higher energy range than the corresponding electron zebra stripe structures due to that the directions of gradient B drift and corotation E×B drift are the same for electrons while opposite for ions. Test particle simulation with the dipole magnetic field and Volland-Stern electric field model have shown that the ion and electron zebra stripe structures could be produced by the convection electric field penetrating into the inner magnetosphere in this event, with their time evolution determined by total drift velocity that are different for ions and electrons. The predicted differences between the ion and electron zebra stripe structures are partially verified through observation. The ion zebra stripe structures could have potential influence to the ring current.展开更多
基金supported by National Natural Sciences Foundation of China (Nos.10425526, 10875122)jointly supported by Chinese Academy of Science (No.KJCX-YW-N28)the Ministry of Sci. and Tech. of China through the Special Program for ITER (No.2009GB105001)
文摘Deeply trapped energetic ions can destabilize the internal kink mode with both high and low frequencies with a potato-orbit limit in the EAST-like tokamaks. The threshold beta value of the deeply trapped energetic ions, the real frequency, and the growth rate of the internal kink mode are predicted in this paper.
基金supported by the National Key R&D Program of China (No. 2017YFE0302000)National Natural Science Foundation of China (No. 11675059)the Fundamental Research Funds for the Central Universities, HUST: 2019kfyXMBZ034。
文摘Resonant magnetic perturbations(RMPs) are extensively applied to mitigate or suppress the edge localized mode in tokamak plasmas, but will break the axisymmetric magnetic field configuration and increase the loss of energetic ions. The mechanism of RMPs induced energetic ion loss has been extensively studied, and is mainly attributed to resonant effects. In this paper,in the perturbed non-axisymmetric tokamak pedestal, we analytically derive the equations of guiding center motion for energetic ions including the bounce/transit averaged radial drift velocity and the toroidal precession frequency modified by strong radial electric field. The loss time of energetic ions is numerically solved and its parametric dependence is analyzed in detail.We find that passing energetic ions cannot escape from the plasma, while deeply trapped energetic ions can escape from the plasma. The strong radial electric field plays an important role in modifying the toroidal precession frequency and resulting in the drift loss of trapped energetic ions. The loss time of trapped energetic ions is much smaller than the corresponding slowdown time in DIII-D pedestal. This indicates that the loss of trapped energetic ions in the perturbed non-axisymmetric pedestal is important, especially for the trapped energetic ions generated by perpendicular neutral beam injection.
基金Supported by the Program of Fusion Reactor Physics and Digital Tokamak with the Chinese Academy of Sciences'One-Three Five'Strategic Planningthe JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(NSFC No 11261140328 and NRF No 2012K2A2A6000443)+1 种基金the National ITER Program of China under Grant No 2015GB101003the National Natural Science Foundation of China under Grant Nos 11405215,11475223 and 11505236
文摘The ion saturation current is very important in probe theory, which can be used to measure the electron temperature and the floating potential. In this work, the effects of energetic ions on the ion saturation current are studied via particle-in-cell simulations. It is found that the energetic ions and background ions can be treated separately as different species, and they satisfy their individual Bohm criterion at the sheath edge. It is shown that the energetic ions can significantly affect the ion saturation current if their concentration is greater than root T-e/(gamma T-i2(i2)), where T-e is the electron temperature, and gamma(i2) and T-i2 represent the polytropic coefficient and temperature of energetic ions, respectively. As a result, the floating potential and the I-V characteristic profile are strongly influenced by the energetic ions. When the energetic ion current dominates the ion saturation current, an analysis of the ion saturation current will yield the energetic ion temperature rather than the electron temperature.
基金Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11505246the Major Research Plan of the National Natural Science Foundation of China under Grant No 91426301
文摘A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at 300℃ and i dpa, at 400℃. MicrostructurM changes are investigated in detail by transmission electron microscopy with cross-section technique. Interstitial defects and defect dusters induced by Fe-ion irradiation are observed in ali the specimens under different conditions. It is found that with increasing irradiation temperature, size of defect clusters increases while the density drops quickly. The results of element chemical mapping from the STEM images indicate that the Si element enrichment and Ta element depletion occur inside the precipitates in the matrix of SIMP steel irradiated to a dose of 1 dpa at 300℃. Correlations between the microstructure and irradiation conditions are briefly discussed.
基金supported by National Natural Science Foundation of China(Grant No.11775257)。
文摘During ion cyclotron resonance heating,the sheath power dissipation caused by ion acceleration in the radio frequency(RF)sheath is one of the main causes of RF power loss in the tokamak edge region.To estimate the power dissipation of an RF sheath in the ion cyclotron range of frequency(ICRF),a 1 D fluid model for the multi-component plasma sheath driven by a sinusoidal disturbance current in the ICRF is presented.By investigation of the sheath potential and ion flux at the wall,it is shown that the larger frequency and lower amplitude of the disturbance current can cause smaller sheath power dissipation.The effect of the energetic ion on the sheath power dissipation depends on the disturbance current.For large amplitude of disturbance current,the increase in the concentration and energy of the energetic ion leads to a decrease in sheath power dissipation.While for a small disturbance current,the sheath power dissipation demonstrates non-monotonic variation with the concentration and energy of the energetic ion.In addition,the sheath power dissipation is found to have a small increase in the presence of light impurity ions with low valence.
文摘Y1.6Ca1.4V 0.45Sn0.5Fe4.05O12 is irradiated by 0.56 GeV carbon ion. The irradiation effect is investigated by Mossbauer spectroscopy. The irradiation results in an isotropic distribution of the hyperfine magnetic field. The hyperfine magnetic fields decrease after the irradiation due to the change of supertransferred field. After the irradiation, the chain Fe(a)-oxygen-Fe(d) become longer and it leads to decrease of the supertransferred field.
文摘This paper presents numerous physical characteristics of Ca, V, Sn doped yttrium iron garnet (CaVSn:YIG) irradiated with 0.56GeV carbon ions delivered by the Heavy Ion Research Facility of Lanzhou (HIRFL). The reason for change of the magnetic properties of the samples induced by energetic carbon ions bombardment is discussed. By comparison of this results with the irradiation effects of YIG induced by energetic argon, krypton and xenon obtained on the GANIL, Caen,France, it is concluded that the irradiation effect of 0.56 GeV C6+ on CaVSn.YIG arises from the electronic energy losses.
文摘Natural MoS_2 surface bombarded by Au ions with 13.4 MeV/nucleon was investigated using scanning tunneling microscope (STM) in ambient air. Rather high ion doses 1×10^(13) cm^(-2) were used in order to have more chances to get damaged images. Not only atomic structures of the original surface, but also arrangements on the elevated regions even at the bottom of the craters are clearly shown in the STM images. In general, there is a one-to-one correlation between the number of ion impacts and the number of craters.
基金the National Natural Science Foundation of China(Grant Nos.41431071,41574152)the National Basic Research Program of China(Grant No.2011CB811404)the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA04060201)
文摘Comprehensive records are available in ENA data of ring current activity recorded by the NUADU instrument aboard TC-2 on 15 May, 2005 during a major magnetic storm (which incorporated a series of substorms). Ion fluxes at 4-min temporal resolution derived from ENA data in the energy ranges 50-81 and 81-158 keV are compared with in situ particle fluxes measured by the LANL-SOPA instruments aboard LANL-01, LANL-02, LANL-97, and LANL-84 (a series of geostationary satellites that encircle the equatorial plane at -6.6 RE). Also, magnetic fields measured simultaneously by the magetometers aboard GOES-10 and GOES-12 (which are also geostationary satellites) are compared with the particle data. It is demonstrated that ion fluxes in the ring current were enhanced during geomagnetic field tailward stretching in the growth phases of substorms rather than after Earthward directed dipolarization events. This observation, which challenges the existing concept that ring current particles are injected Earthward from the magnetotail following dipolarization events, requires further investigation using a large number of magnetic storm events.
基金supported by the Major Project of Chinese National Programs for Fundamental Research and Development(Grant No.2012CB825603)the National Natural Science Foundation of China(Grant Nos.41421003&41474148)+1 种基金the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA04060201)supported by JHU/APL(Subcontract No.937836)to the New Jersey Institute of Technology under NASA Prime(Contract No.NAS5-01072)
文摘During February 15–16, 2014, the energetic electron spectrogram for four successive inner radiation belt crossing show clearly the electron zebra structures and their time evolution which last for about 17 h. Unfortunately, the time of flight(TOF) in RBSPICE measurement is turned off below 3 RE, and the ion measurement is contaminated by electrons. Thus in this study we studied the differences between the ion and electron zebra stripe structures and their time evolution using simple theory and test particle simulation, combining the electron measurement from RBSIPICE onboard Van Allen Probes. Theoretical analysis predicts that the ion zebra stripe structures should lie at a higher energy range than the corresponding electron zebra stripe structures due to that the directions of gradient B drift and corotation E×B drift are the same for electrons while opposite for ions. Test particle simulation with the dipole magnetic field and Volland-Stern electric field model have shown that the ion and electron zebra stripe structures could be produced by the convection electric field penetrating into the inner magnetosphere in this event, with their time evolution determined by total drift velocity that are different for ions and electrons. The predicted differences between the ion and electron zebra stripe structures are partially verified through observation. The ion zebra stripe structures could have potential influence to the ring current.