On the basis of the structural and electronic properties of 14 different cyclic nitramine molecules, two types of formulas are employed to predict their electric spark sensitivity. One contains the minimum Mulliken ch...On the basis of the structural and electronic properties of 14 different cyclic nitramine molecules, two types of formulas are employed to predict their electric spark sensitivity. One contains the minimum Mulliken charges of nitro group, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen; the other contains the lowest unoccupied molecular orbital energy, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen. Using these two types of formulas, we calculate the electric spark sensitivity of these 14 cyclic nitramine molecules, and compare them with the experimental data and previous theoretical values. And our investigations show that the former type of formula is better than the latter on predicting the electric spark sensitivity for cyclic nitramine molecules.展开更多
Main observation and conclusion Important progress has been made in the development of energetic molecules with high performance by computer-aided molecular design in recent years,but structural novelty of organic sca...Main observation and conclusion Important progress has been made in the development of energetic molecules with high performance by computer-aided molecular design in recent years,but structural novelty of organic scaffolds is insufficient.In this work,we propose an intra-ring bridging strategy inspired by the known energetic nitramines to design novel polycyclic and cage energetic molecules.More than 100 energetic structures were designed by introducing the C—C bridges and increasing the ring size.The synthesis difficulty is considered besides the two most concerned properties of EMs,energy and safety.After a comprehensive estimation,a symmetric cage molecule labeled as 8U-30 was finally selected because of its relatively high detonation performance,and comparable impact sensitivity as well as synthetic accessibility with CL-20.Hopefully,the proposed strategy could be utilized in further molecular design to gain various scaffolds,especially cage structures,for different demands.展开更多
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW), commonly called as CL-20, is a high energy and high density material of keen interest to both commercial and scientific worlds due to its greater insen...2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW), commonly called as CL-20, is a high energy and high density material of keen interest to both commercial and scientific worlds due to its greater insensitivity(reduced sensitivity) along with a positive high heat of formation, which is due to the azanitro groups attached to the skeleton of HNIW and its highly strained cage structure. It plays a remarkable role in modification and replacement of most of the propellant(gun and rocket) preparations. In this report we present the comparative strategies involved in the syntheses of HNIW with respect to economical and environmental aspects. Various methods reported in the literature on the purification of the crude HNIW(α-HNIW) to obtain ε-form of HNIW(high dense/more potential) are consolidated. Understanding of the structure, morphology, energetics, thermal behavior and their modification to meet the applicability(decreased impact sensitivity) determines the industrial application of HNIW. A compilation of the available literature on the aforementioned characteristic properties for obtaining a value added ε-HNIW is discussed here. This overview also reports the literature available on newer forms of HNIW including derivatives and cocrystals,which increase the performance of HNIW.展开更多
基金the National Natural Science Foundation of China (Nos. 11176020 and 10976019)
文摘On the basis of the structural and electronic properties of 14 different cyclic nitramine molecules, two types of formulas are employed to predict their electric spark sensitivity. One contains the minimum Mulliken charges of nitro group, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen; the other contains the lowest unoccupied molecular orbital energy, the ratio of hydrogen to oxygen, and the ratio of carbon to oxygen. Using these two types of formulas, we calculate the electric spark sensitivity of these 14 cyclic nitramine molecules, and compare them with the experimental data and previous theoretical values. And our investigations show that the former type of formula is better than the latter on predicting the electric spark sensitivity for cyclic nitramine molecules.
基金support from the National Natural Science Foundation of China(Nos.21875184,21978311)the Youth Talent of Shaanxi"TeZhi"Programproject sponsored by Xi’an Modern Chemistry Research Institute(WDZCKYXM20190101).
文摘Main observation and conclusion Important progress has been made in the development of energetic molecules with high performance by computer-aided molecular design in recent years,but structural novelty of organic scaffolds is insufficient.In this work,we propose an intra-ring bridging strategy inspired by the known energetic nitramines to design novel polycyclic and cage energetic molecules.More than 100 energetic structures were designed by introducing the C—C bridges and increasing the ring size.The synthesis difficulty is considered besides the two most concerned properties of EMs,energy and safety.After a comprehensive estimation,a symmetric cage molecule labeled as 8U-30 was finally selected because of its relatively high detonation performance,and comparable impact sensitivity as well as synthetic accessibility with CL-20.Hopefully,the proposed strategy could be utilized in further molecular design to gain various scaffolds,especially cage structures,for different demands.
基金financial assistance under the sponsored project "Novel materials for high energy reactions" (H/A: 4254) to Gulbarga University, Kalaburagi, India
文摘2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW), commonly called as CL-20, is a high energy and high density material of keen interest to both commercial and scientific worlds due to its greater insensitivity(reduced sensitivity) along with a positive high heat of formation, which is due to the azanitro groups attached to the skeleton of HNIW and its highly strained cage structure. It plays a remarkable role in modification and replacement of most of the propellant(gun and rocket) preparations. In this report we present the comparative strategies involved in the syntheses of HNIW with respect to economical and environmental aspects. Various methods reported in the literature on the purification of the crude HNIW(α-HNIW) to obtain ε-form of HNIW(high dense/more potential) are consolidated. Understanding of the structure, morphology, energetics, thermal behavior and their modification to meet the applicability(decreased impact sensitivity) determines the industrial application of HNIW. A compilation of the available literature on the aforementioned characteristic properties for obtaining a value added ε-HNIW is discussed here. This overview also reports the literature available on newer forms of HNIW including derivatives and cocrystals,which increase the performance of HNIW.