Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha...Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.展开更多
Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and ...Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials.展开更多
From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exh...From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials.展开更多
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves...The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
The effect of a tilted-dipole three-dimensional corotating interaction region(CIR)on the transport and acceleration of solar energetic particles(SEPs)is studied.In this work,we discussed how the particle intensity lon...The effect of a tilted-dipole three-dimensional corotating interaction region(CIR)on the transport and acceleration of solar energetic particles(SEPs)is studied.In this work,we discussed how the particle intensity longitudinal and radial dependence might be influenced by the background structures.Moreover,we investigate how the spectral index distribution is modulated by the CIR structure We use the focused transport equation(FTE)to describe the propagation and acceleration of SEPs in a tilt-dipole 3D CIR,generated by the high-resolution 3D magnetohydrodynamic(MHD)model.The forward stochastic differential method is used to solve the FTE.The protons with theE~(-4.4)spectrum from 0.5 to 15 MeV are injected uniformly at the heliographic equator of 0.15 AU.Physical quantities are extracted along each interplanetary magnetic field(IMF)line to show the results.In the tilted-dipole CIR background,if injected from the solar equator at the inner boundary,particles in the slow flow are transported to higher latitudes due to the extension of the IMF lines to higher latitudes.The longitudinal patterns of the particles are dominated by the density of IMF lines.The focusing effect modulates the longitudinal variation of the particle intensity and gives rise to new longitudinal intensity peaks.The adiabatic effect largely increases the intensity fluctuation along the longitude.The structure of the solar wind can also lead to the difference of the indexαin the empirical functionI_(max)=kR~(-α),describing the radial variation of peak intensity according to our simulation.Under the influence of the CIR structure,the indexαvaries from 1.9 to 3.4 at 0.3-1.0 AU.The variation of the solar wind speed should be considered when estimating the radial dependence of the SEP peak intensity.The spectra indices rise near the CIR boundaries and drop near the stream interface(SI).The adiabatic effect makes the spatial variability of the spectral index larger.The spectral index could be similar at different radial distances in the CIR structure.展开更多
Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemi...Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemical deposition method is used to prepare ZnO/CuO/Al energetic diode,in which N-type ZnO and P-type CuO are constricted to a PN junction.This paper comprehensively discusses the material properties,morphology,semiconductor characteristics,and exploding performances of the energetic diode.Experimental results show that the energetic diode has typical rectification with a turn-on voltage of about 1.78 V and a reverse leakage current of about 3×10^(-4)A.When a constant voltage of 70 V loads to the energetic diode in the forward direction for about 0.14 s or 55 V loads in the reverse direction for about 0.17 s,the loaded power can excite the energetic diode exploding and the current rises to about100 A.Due to the unique performance of the energetic diode,it has a double function of rectification and explosion.The energetic diode can be used as a logic element in the normal chip to complete the regular operation,and it can release energy to destroy the chip accurately.展开更多
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi...In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.展开更多
Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis...Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis, and cell survival. These roles offer significant insight for understanding homeostasis of normal physiologic processes, and the pathophysiologic consequences of disruption of normal function. Because of the broad nature of chaperone action, S1R agonists and antagonists represent potential drug discovery goals for the pharmacotherapeutic treatment of a variety of disorders that result from dysfunctional proteins. The present study summarizes the S1R as a pharmacologic chaperone crucial for protein folding and cellular homeostasis. Through literature review and thermodynamic analysis, it explores how S1R stabilizes target proteins, influencing neuroprotection and potential drug therapies. The binding of chaperones to target proteins is thermodynamically favorable, offering insights into treating diseases linked to protein misfolding.展开更多
As a subversive manufacturing technology, additive manufacturing technology has many technical advantages such as high freedom of design and not limited by complex structure of parts. The application of additive manuf...As a subversive manufacturing technology, additive manufacturing technology has many technical advantages such as high freedom of design and not limited by complex structure of parts. The application of additive manufacturing technology to the charge molding of energetic materials will subvert the traditional manufacturing concept of energetic materials, realize the advanced charge design concept, shorten the research and development time of weapons and equipment, and improve the comprehensive performance of weapons and equipment, which is of great significance for the rapid development of high-tech weapons and equipment. This paper analyzes the research progress of additive manufacturing technology in the field of energetic materials at home and abroad and puts forward some suggestions for future research of this technology. .展开更多
Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane ...Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane chain parts, and systematically investigate their structure-property relationships.Results show that DNPEPs have impact sensitivities all higher than 25.2 J, thermal decomposition temperatures all higher than 254 ℃, and glass transition temperatures(T_(g)) lower than-90 ℃.Furthermore, the effects of DNPEPs as plasticizer are studied on hydroxyl terminated polybutadiene(HTPB) in detail, including the viscosity, glass transition temperatures and others. It is noteworthy that 2,2-dinitropropyl nonanoate(DNPNc) among these DNPEPs exhibits the most expected simultaneous tuning effects on both viscosity and T_(g) of HTPB systems, providing favorable potentials to replace the conventional plastizers as dioctyl sebacate(DOS) in the HTPB based propellants and explosives.展开更多
Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the the...Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the thermal decomposition of ammonium perchlorate(NH_(4)ClO_(4),AP)-based energetic molecular perovskites(AP-based energetic molecular perovskites).The morphology and structure of the MgCo_(2)O_(4) nanosheets were characterized.And their catalytic effect on the thermal decomposition of AP-based energetic molecular perovskites(H_2pz)[NH_(4)(ClO_(4))_(3)](PAP-4),(H_2dabco)[NH_(4)(ClO_(4))_(3)](DAP-4),(H_2mpz)[NH_(4)(ClO_(4))_(3)](PAP-M_(4)),and (H_2hpz)[NH_(4)(ClO_(4))_(3)](PAP-H_(4)) was analyzed.The results showed that MgCo_(2)O_(4) nanosheets had excellent intrinsically catalytic performance towards enhancing the thermal decomposition of AP-based energetic molecular perovskites.After adding MgCo_(2)O_(4) nanosheets,the thermal decomposition peak temperatures of PAP-4,DAP-4,PAP-M_(4),and PAP-H_(4) had been reduced by35.7℃,48.4℃,37.9℃,and 43.6℃,respectively.And the activation energy(Ea)of the thermal decomposition of AP-based energetic molecular perovskites had been reduced,the Eaof PAP-H_(4) decreased by 46.4 kJ/mol at most among them.The catalytic mechanism of MgCo_(2)O_(4) nanosheets for AP-based energetic molecular perovskites is analyzed.This work provides a reference for the future application of AP-based energetic molecular perovskites.展开更多
Thermite films are typical energetic materials(EMs)and have great value in initiating explosive devices.However,research in thermite film preparation is far behind that of research in thermite powders.Electrophoretic ...Thermite films are typical energetic materials(EMs)and have great value in initiating explosive devices.However,research in thermite film preparation is far behind that of research in thermite powders.Electrophoretic deposition(EPD)is an emerging,rapid coating method for film fabrication,including of energetic composite films.In this work,a polytetrafluoroethylene(PTFE)/Al/CuO organic-inorganic hybrid energetic film was successfully obtained using the above method for the first time.The addition of lithocholic acid as a surfactant into the electroplating suspension enabled PTFE to be charged.The combustion and energy release were analyzed by means of a high-speed camera and differential scanning calorimetery(DSC).It was found that the combustion process and energy release of PTFE/Al/CuO were much better than that of Al/CuO.The main reason for the excellent combustion performance of the hybrid PTFE/Al/CuO system was that the oxidability of PTFE accelerated the redox reaction between Al and CuO.The prepared PTFE/Al/CuO film was also employed as ignition material to fire a B-KNO_3 explosive successfully,indicating considerable potential for use as an ignition material in micro-ignitors.This study sheds light on the preparation of fluoropolymer-containing organic-inorganic hybrid energetic films by one-step electrophoretic deposition.展开更多
Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity ...Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity and functionality of the novel energetic nanocomposites are still limited.In this work,spray crystallization(SC)method was used to prepare novel energetic nanocomposites,the high-energy metal-organic complex[Ni(CHZ)_(3)](ClO_(4))_(2)(CHZ=1,3-diaminourea)was composited with nanoaluminum(n-Al).Results showed that n-Al/[Ni(CH_(2))_(3)](ClO_(4))_(2)energetic nanocomposites prepared by SC method increased heat release to 2977.6 J/g and peak pressure to 3.91 MPa with higher pressurization rate(1324.06 MPa/s),decreased sensitivity thresholds(>100 mJ)to electrostatic discharge(ESD)and enhanced detonation ability compared with[Ni(CHZ)_(3)](ClO_(4))_(2)alone and physically mixed(PM)n-Al/[Ni(CHZ)_(3)](ClO_(4))_(2).These results proved that it is significant to introduce energetic metal-organic complexes with inherent high energy in new-concept n-Al/energetic metal-organic complexes nanocomposites through SC method for a better performance of its application.展开更多
In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged ring...In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged rings by introducing multiple nitrogen heterocycles at different sites of fused rings is still difficult to progress,which seriously limits the emergence of advanced energetic compounds.In this study,a series of energetic materials choosing different nitrogen rich heterocycles at the vacancies of the fused ring,i.e.,neutral compound 5,6 and their ionic derivatives(compounds 7-12)were designed and synthesized.Compounds 5 and 6 were further confirmed by single crystal X-ray diffraction,while the crystal analysis and theoretical calculations were carried out to explore the relationship between crystal structure and physicochemical properties.All of the newly synthesized compounds(5-12)are insensitive to mechanical stimulation(IS>40 J;FS≥342 N)and they own the high detonation velocity(D:8322-9075 m/s).Notably,hydrazine salt 11 own the higher detonation velocity(9075 m/s)and powder density(1.83 g/cm^(3)),but exhibits lower sensitivity(IS>40 J)than the classical energetic compound RDX(8795 m/s,1.80 g/cm^(3),7.5 J).It is obvious that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energy-stability.展开更多
Furazan macrocyclic compound 3,4:7,8:11,12:15,16-tetrafurazan-1,9-dioxazo-5,13-diazocyclohexadecane(DOATF)is an ideal energetic material with high heat of formation.Here,using scanning tunneling microscopy(STM)and non...Furazan macrocyclic compound 3,4:7,8:11,12:15,16-tetrafurazan-1,9-dioxazo-5,13-diazocyclohexadecane(DOATF)is an ideal energetic material with high heat of formation.Here,using scanning tunneling microscopy(STM)and noncontact atomic force microscopy(nc-AFM),we investigated the adsorption structure of DOATF molecules on Au(111)surface,which shows the four furanzan rings in the STM images and a bright protrusion off the center of the molecule in the nc-AFM images.Combined with density functional theory(DFT)calculations,we confirmed that the bright feature in the nc-AFM images is an N-O coordinate bond pointing upwards in one of the two azoxy groups;while the other N-O bond pointing towards the Au(111)surface.Our work contributes for a deeper understanding of the adsorption structure of macrocyclic compounds,which would promote the designing of DOATF-metal frameworks.展开更多
In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only...In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only two efficient steps.Significantly,the seven-membered heterocyclic ring has a stable energetic skeleton with multiple modifiable sites.However,the 5,7-fused bicyclic energetic compounds were rarely reported in the area of energetic materials.Three neutral compounds 1,2 and 4 were synthesized in this work.To improve the detonation performances of the 5,7-fused neutral compounds,corresponding perchlorate 1a and 2a were further developed.The physicochemical and energetic performances of all newly developed compounds were experimentally determined.All newly prepared energetic compounds exhibit high decomposition temperatures(Td:243.8-336℃)and low mechanical sensitivities(IS:>15 J,FS:>280 N).Among them,the velocities performances of 1a(Dv=7651 m/s)and 4(Dv=7600 m/s)are comparable to that of typical heat-resistant energetic material HNS(Dv=7612 m/s).Meanwhile,the high decomposition temperature and low mechanical sensitivities(Td=336℃;IS=32 J;FS>353 N)of 4 are superior to that of HNS(Td=318℃;IS=5 J;FS=250 N).Hence,the 5,7-fused bicyclic compounds with high thermostability,low sensitivities and adjustable detonation performance have a clear tendency to open up a new space for the development of heat-resistant energetic materials.展开更多
High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of ...High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.21975127,22105102,and 22135003)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20210074)the Fundamental Research Funds for the Central Universities(Grant No.30921011204)。
文摘Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.
基金funding support from Startup Foundation for Docotors of Yan’an University(Grant No.YAU205040372)Project of Science and Technology Office of Shaanxi Province(Grant No.2023-JC-QN-0152)。
文摘Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials.
基金National Natural Science Foundation of China(Grant Nos.22075023,22205022,and 22235003)to provide fund for conducting experiments。
文摘From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials.
基金the support for this work by National Natural Science Foundation of China(Grant Nos.22175139 and 22105156)。
文摘The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
基金jointly supported by the National Natural Science Foundation of China(42330210 and 41974202)the National Key R&D Program of China(grant Nos.2022YFF0503800 and2021YFA0718600)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB 41000000)the Specialized Research Fund for State Key Laboratories。
文摘The effect of a tilted-dipole three-dimensional corotating interaction region(CIR)on the transport and acceleration of solar energetic particles(SEPs)is studied.In this work,we discussed how the particle intensity longitudinal and radial dependence might be influenced by the background structures.Moreover,we investigate how the spectral index distribution is modulated by the CIR structure We use the focused transport equation(FTE)to describe the propagation and acceleration of SEPs in a tilt-dipole 3D CIR,generated by the high-resolution 3D magnetohydrodynamic(MHD)model.The forward stochastic differential method is used to solve the FTE.The protons with theE~(-4.4)spectrum from 0.5 to 15 MeV are injected uniformly at the heliographic equator of 0.15 AU.Physical quantities are extracted along each interplanetary magnetic field(IMF)line to show the results.In the tilted-dipole CIR background,if injected from the solar equator at the inner boundary,particles in the slow flow are transported to higher latitudes due to the extension of the IMF lines to higher latitudes.The longitudinal patterns of the particles are dominated by the density of IMF lines.The focusing effect modulates the longitudinal variation of the particle intensity and gives rise to new longitudinal intensity peaks.The adiabatic effect largely increases the intensity fluctuation along the longitude.The structure of the solar wind can also lead to the difference of the indexαin the empirical functionI_(max)=kR~(-α),describing the radial variation of peak intensity according to our simulation.Under the influence of the CIR structure,the indexαvaries from 1.9 to 3.4 at 0.3-1.0 AU.The variation of the solar wind speed should be considered when estimating the radial dependence of the SEP peak intensity.The spectra indices rise near the CIR boundaries and drop near the stream interface(SI).The adiabatic effect makes the spatial variability of the spectral index larger.The spectral index could be similar at different radial distances in the CIR structure.
基金the National Natural Science Foundation of China(Grant Nos.22275092,52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemical deposition method is used to prepare ZnO/CuO/Al energetic diode,in which N-type ZnO and P-type CuO are constricted to a PN junction.This paper comprehensively discusses the material properties,morphology,semiconductor characteristics,and exploding performances of the energetic diode.Experimental results show that the energetic diode has typical rectification with a turn-on voltage of about 1.78 V and a reverse leakage current of about 3×10^(-4)A.When a constant voltage of 70 V loads to the energetic diode in the forward direction for about 0.14 s or 55 V loads in the reverse direction for about 0.17 s,the loaded power can excite the energetic diode exploding and the current rises to about100 A.Due to the unique performance of the energetic diode,it has a double function of rectification and explosion.The energetic diode can be used as a logic element in the normal chip to complete the regular operation,and it can release energy to destroy the chip accurately.
文摘In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.
文摘Initially thought to be an opioid receptor subtype, Sigma-1 receptors (S1R) are now known to be unique proteins that have chaperone-like properties. As such, they play critical roles in cellular signaling, homeostasis, and cell survival. These roles offer significant insight for understanding homeostasis of normal physiologic processes, and the pathophysiologic consequences of disruption of normal function. Because of the broad nature of chaperone action, S1R agonists and antagonists represent potential drug discovery goals for the pharmacotherapeutic treatment of a variety of disorders that result from dysfunctional proteins. The present study summarizes the S1R as a pharmacologic chaperone crucial for protein folding and cellular homeostasis. Through literature review and thermodynamic analysis, it explores how S1R stabilizes target proteins, influencing neuroprotection and potential drug therapies. The binding of chaperones to target proteins is thermodynamically favorable, offering insights into treating diseases linked to protein misfolding.
文摘As a subversive manufacturing technology, additive manufacturing technology has many technical advantages such as high freedom of design and not limited by complex structure of parts. The application of additive manufacturing technology to the charge molding of energetic materials will subvert the traditional manufacturing concept of energetic materials, realize the advanced charge design concept, shorten the research and development time of weapons and equipment, and improve the comprehensive performance of weapons and equipment, which is of great significance for the rapid development of high-tech weapons and equipment. This paper analyzes the research progress of additive manufacturing technology in the field of energetic materials at home and abroad and puts forward some suggestions for future research of this technology. .
基金financial support of the National Natural Science Foundation of China (21875185)。
文摘Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane chain parts, and systematically investigate their structure-property relationships.Results show that DNPEPs have impact sensitivities all higher than 25.2 J, thermal decomposition temperatures all higher than 254 ℃, and glass transition temperatures(T_(g)) lower than-90 ℃.Furthermore, the effects of DNPEPs as plasticizer are studied on hydroxyl terminated polybutadiene(HTPB) in detail, including the viscosity, glass transition temperatures and others. It is noteworthy that 2,2-dinitropropyl nonanoate(DNPNc) among these DNPEPs exhibits the most expected simultaneous tuning effects on both viscosity and T_(g) of HTPB systems, providing favorable potentials to replace the conventional plastizers as dioctyl sebacate(DOS) in the HTPB based propellants and explosives.
基金the National Natural Science Foundation of China(Grant No.21975227)the Found of National defence Sci&Tech Laboratory(Grant No.6142602210306)。
文摘Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the thermal decomposition of ammonium perchlorate(NH_(4)ClO_(4),AP)-based energetic molecular perovskites(AP-based energetic molecular perovskites).The morphology and structure of the MgCo_(2)O_(4) nanosheets were characterized.And their catalytic effect on the thermal decomposition of AP-based energetic molecular perovskites(H_2pz)[NH_(4)(ClO_(4))_(3)](PAP-4),(H_2dabco)[NH_(4)(ClO_(4))_(3)](DAP-4),(H_2mpz)[NH_(4)(ClO_(4))_(3)](PAP-M_(4)),and (H_2hpz)[NH_(4)(ClO_(4))_(3)](PAP-H_(4)) was analyzed.The results showed that MgCo_(2)O_(4) nanosheets had excellent intrinsically catalytic performance towards enhancing the thermal decomposition of AP-based energetic molecular perovskites.After adding MgCo_(2)O_(4) nanosheets,the thermal decomposition peak temperatures of PAP-4,DAP-4,PAP-M_(4),and PAP-H_(4) had been reduced by35.7℃,48.4℃,37.9℃,and 43.6℃,respectively.And the activation energy(Ea)of the thermal decomposition of AP-based energetic molecular perovskites had been reduced,the Eaof PAP-H_(4) decreased by 46.4 kJ/mol at most among them.The catalytic mechanism of MgCo_(2)O_(4) nanosheets for AP-based energetic molecular perovskites is analyzed.This work provides a reference for the future application of AP-based energetic molecular perovskites.
基金supported by National Natural Science Foundation of China(No.21905032)Natural Science Foundation of the Higher Education Institutions of Anhui Province(No.KJ2019A0687,No.KJ2016A503)+2 种基金High-level Humanities and Social Science Award Cultivation Project of Chaohu University and Innovation(No.kj20zkjp01,No.kj20xqyx02)Entrepreneurship Training Program for Students of National and school level(No.202010380014,X202010380013)Chaohu University for the Start-Up grant(No.KYQD-201907)。
文摘Thermite films are typical energetic materials(EMs)and have great value in initiating explosive devices.However,research in thermite film preparation is far behind that of research in thermite powders.Electrophoretic deposition(EPD)is an emerging,rapid coating method for film fabrication,including of energetic composite films.In this work,a polytetrafluoroethylene(PTFE)/Al/CuO organic-inorganic hybrid energetic film was successfully obtained using the above method for the first time.The addition of lithocholic acid as a surfactant into the electroplating suspension enabled PTFE to be charged.The combustion and energy release were analyzed by means of a high-speed camera and differential scanning calorimetery(DSC).It was found that the combustion process and energy release of PTFE/Al/CuO were much better than that of Al/CuO.The main reason for the excellent combustion performance of the hybrid PTFE/Al/CuO system was that the oxidability of PTFE accelerated the redox reaction between Al and CuO.The prepared PTFE/Al/CuO film was also employed as ignition material to fire a B-KNO_3 explosive successfully,indicating considerable potential for use as an ignition material in micro-ignitors.This study sheds light on the preparation of fluoropolymer-containing organic-inorganic hybrid energetic films by one-step electrophoretic deposition.
基金supported by National Natural Science Foundation of China(project no.51676100)。
文摘Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity and functionality of the novel energetic nanocomposites are still limited.In this work,spray crystallization(SC)method was used to prepare novel energetic nanocomposites,the high-energy metal-organic complex[Ni(CHZ)_(3)](ClO_(4))_(2)(CHZ=1,3-diaminourea)was composited with nanoaluminum(n-Al).Results showed that n-Al/[Ni(CH_(2))_(3)](ClO_(4))_(2)energetic nanocomposites prepared by SC method increased heat release to 2977.6 J/g and peak pressure to 3.91 MPa with higher pressurization rate(1324.06 MPa/s),decreased sensitivity thresholds(>100 mJ)to electrostatic discharge(ESD)and enhanced detonation ability compared with[Ni(CHZ)_(3)](ClO_(4))_(2)alone and physically mixed(PM)n-Al/[Ni(CHZ)_(3)](ClO_(4))_(2).These results proved that it is significant to introduce energetic metal-organic complexes with inherent high energy in new-concept n-Al/energetic metal-organic complexes nanocomposites through SC method for a better performance of its application.
基金supported by the National Natural Science Foundation of China(Grant No.21875110,22075143)the Science Challenge Projectthe Qing Lan Project for the grant。
文摘In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged rings by introducing multiple nitrogen heterocycles at different sites of fused rings is still difficult to progress,which seriously limits the emergence of advanced energetic compounds.In this study,a series of energetic materials choosing different nitrogen rich heterocycles at the vacancies of the fused ring,i.e.,neutral compound 5,6 and their ionic derivatives(compounds 7-12)were designed and synthesized.Compounds 5 and 6 were further confirmed by single crystal X-ray diffraction,while the crystal analysis and theoretical calculations were carried out to explore the relationship between crystal structure and physicochemical properties.All of the newly synthesized compounds(5-12)are insensitive to mechanical stimulation(IS>40 J;FS≥342 N)and they own the high detonation velocity(D:8322-9075 m/s).Notably,hydrazine salt 11 own the higher detonation velocity(9075 m/s)and powder density(1.83 g/cm^(3)),but exhibits lower sensitivity(IS>40 J)than the classical energetic compound RDX(8795 m/s,1.80 g/cm^(3),7.5 J).It is obvious that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energy-stability.
基金the National Key Research and Development Projects of China(Grant No.2019YFA0308500)the National Natural Science Foundation of China(Grant No.61888102)the Funds from the Chinese Academy of Sciences(Grant Nos.XDB30000000 and YSBR-003)。
文摘Furazan macrocyclic compound 3,4:7,8:11,12:15,16-tetrafurazan-1,9-dioxazo-5,13-diazocyclohexadecane(DOATF)is an ideal energetic material with high heat of formation.Here,using scanning tunneling microscopy(STM)and noncontact atomic force microscopy(nc-AFM),we investigated the adsorption structure of DOATF molecules on Au(111)surface,which shows the four furanzan rings in the STM images and a bright protrusion off the center of the molecule in the nc-AFM images.Combined with density functional theory(DFT)calculations,we confirmed that the bright feature in the nc-AFM images is an N-O coordinate bond pointing upwards in one of the two azoxy groups;while the other N-O bond pointing towards the Au(111)surface.Our work contributes for a deeper understanding of the adsorption structure of macrocyclic compounds,which would promote the designing of DOATF-metal frameworks.
基金support from the National Natural Science Foundation of China(Grant No.22075143,21875110)the Science Challenge Project(Grant No.TZ2018004)the Qing Lan Project for the grant。
文摘In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only two efficient steps.Significantly,the seven-membered heterocyclic ring has a stable energetic skeleton with multiple modifiable sites.However,the 5,7-fused bicyclic energetic compounds were rarely reported in the area of energetic materials.Three neutral compounds 1,2 and 4 were synthesized in this work.To improve the detonation performances of the 5,7-fused neutral compounds,corresponding perchlorate 1a and 2a were further developed.The physicochemical and energetic performances of all newly developed compounds were experimentally determined.All newly prepared energetic compounds exhibit high decomposition temperatures(Td:243.8-336℃)and low mechanical sensitivities(IS:>15 J,FS:>280 N).Among them,the velocities performances of 1a(Dv=7651 m/s)and 4(Dv=7600 m/s)are comparable to that of typical heat-resistant energetic material HNS(Dv=7612 m/s).Meanwhile,the high decomposition temperature and low mechanical sensitivities(Td=336℃;IS=32 J;FS>353 N)of 4 are superior to that of HNS(Td=318℃;IS=5 J;FS=250 N).Hence,the 5,7-fused bicyclic compounds with high thermostability,low sensitivities and adjustable detonation performance have a clear tendency to open up a new space for the development of heat-resistant energetic materials.
基金supported by National Key R&D Program of China(Nos.2019YFE03050002,2018YFE0310400,and 2022YFE03040002)National Natural Science Foundation of China(Nos.12005003 and 11975270)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2022-04)。
文摘High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.