We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic ...We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic behavior of solutions,an inevitable step is to deal with the integralΩ|ut|^(m−2)utudx.A usual technique is to apply Young’s inequality and Sobolev embedding inequality to use the energy function and its derivative to control this integral for the subcritical or critical damping.However,for the supercritical case,the failure of the Sobolev embedding inequality makes the classical method be impossible.To do this,our strategy is to prove the rate of the integral RΩ|u|^(m)dx grows polynomially as a positive power of time variable t and apply the modified multiplier method to obtain the energy functional decays logarithmically.These results improve and extend our previous work[12].Finally,some numerical examples are also given to authenticate our results.展开更多
The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied w...The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.展开更多
For quantum fluids governed by the compressible quantum Navier-Stokes equations in R;with viscosity and heat conduction, we prove the optimal L;- L;decay rates for the classical solutions near constant states. The pro...For quantum fluids governed by the compressible quantum Navier-Stokes equations in R;with viscosity and heat conduction, we prove the optimal L;- L;decay rates for the classical solutions near constant states. The proof is based on the detailed linearized decay estimates by Fourier analysis of the operators, which is drastically different from the case when quantum effects are absent.展开更多
基金supported by the Scientific and Technological Project of jilin Province's Education Department in Thirteenth Five-Year(JKH20180111KI)supported by NSFC(11301211).
文摘We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic behavior of solutions,an inevitable step is to deal with the integralΩ|ut|^(m−2)utudx.A usual technique is to apply Young’s inequality and Sobolev embedding inequality to use the energy function and its derivative to control this integral for the subcritical or critical damping.However,for the supercritical case,the failure of the Sobolev embedding inequality makes the classical method be impossible.To do this,our strategy is to prove the rate of the integral RΩ|u|^(m)dx grows polynomially as a positive power of time variable t and apply the modified multiplier method to obtain the energy functional decays logarithmically.These results improve and extend our previous work[12].Finally,some numerical examples are also given to authenticate our results.
文摘The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.
基金supported in part by NSFC(11471057)Natural Science Foundation Project of CQ CSTC(cstc2014jcyjA50020)the Fundamental Research Funds for the Central Universities(Project No.106112016CDJZR105501)
文摘For quantum fluids governed by the compressible quantum Navier-Stokes equations in R;with viscosity and heat conduction, we prove the optimal L;- L;decay rates for the classical solutions near constant states. The proof is based on the detailed linearized decay estimates by Fourier analysis of the operators, which is drastically different from the case when quantum effects are absent.