The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating...New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating excessive exploitation of oil resources,a stance strongly supported by governments.However,new energy vehicles possess certain drawbacks in terms of price and usability compared to traditional counterparts.Therefore,external support is imperative for their development.This paper delineates four main sections:the background of new energy vehicle promotion and application,a comparative analysis of domestic and foreign promotion models,specific promotion suggestions,and future development prospects.By leveraging insights from economic analysis,the optimal promotion model for new energy vehicles is elucidated.展开更多
This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch fr...This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch from proton exchange membranes(PEMs) to hydroxide exchange membranes(HEMs) may lead to a new-generation of affordable electrochemical energy devices including fuel cells, electrolyzers, and solar hydrogen generators. For lithium-ion batteries, a series of advancements in design and chemistry are required for electric vehicle and energy storage applications. Manufacturing process development and optimization of the LiF eP O_4/C cathode materials and several emerging novel anode materials are also discussed using the authors' work as examples.Design and manufacturing process of lithium-ion battery electrodes are introduced in detail, and modeling and optimization of large-scale lithium-ion batteries are also presented. Electrochemical energy materials and device innovations can be further prompted by better understanding of the fundamental transport phenomena involved in unit operations.展开更多
The binary CoSb_(3) skutterudite thermoelectric material has high thermal conductivity due to the covalent bond between Co and Sb, and the thermoelectric figure of merit, ZT, is very low. The thermal conductivity of C...The binary CoSb_(3) skutterudite thermoelectric material has high thermal conductivity due to the covalent bond between Co and Sb, and the thermoelectric figure of merit, ZT, is very low. The thermal conductivity of CoSb_(3) materials can be significantly reduced through phonon engineering, such as low-dimensional structure, the introduction of nano second phases,nanointerfaces or nanopores, which greatly improves their ZT values. The phonon engineering can optimize significantly the thermal transport properties of CoSb_(3)-based materials. However, the improvement of the electronic transport properties is not obvious, or even worse. Energy band and charge-carrier engineering can significantly improve the electronic transport properties of CoSb_(3)-based materials while optimizing the thermal transport properties. Therefore, the decoupling of thermal and electronic transport properties of CoSb_(3)-based materials can be realized by energy band and charge-carrier engineering. This review summarizes some methods of optimizing synergistically the electronic and thermal transport properties of CoSb_(3) materials through the energy band and charge-carrier engineering strategies. Energy band engineering strategies include band convergence or resonant energy levels caused by doping/filling. The charge-carrier engineering strategy includes the optimization of carrier concentration and mobility caused by doping/filling, forming modulation doped structures or introducing nano second phase. These strategies are effective means to improve performance of thermoelectric materials and provide new research ideas of development of high-efficiency thermoelectric materials.展开更多
New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us...New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.展开更多
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ...A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
The improvement of students’abilities is of great significance to discover the relevant scientific problems in daily life,to analyze and solve practical problems,to trigger scientific inspiration,and to encourage inn...The improvement of students’abilities is of great significance to discover the relevant scientific problems in daily life,to analyze and solve practical problems,to trigger scientific inspiration,and to encourage innovation and entrepreneurship.Taken the course entitled Built Environment(BE)as an example,this study introduces five lecture cases combining with engineering practices,and examines the evaluation of teaching and learning effect on student outcomes.The cases consider various problems to be solved urgently in an actual project,and evaluate the student outcomes by statistically analyzing the questionnaires.Most of the students actively participate in five cases and cheerfully share their achievements.More than 85%of students are satisfied with the engineering practice and the learning proposal,and convey a little or even significantly change in their understanding of the employment prospects.展开更多
Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters ...Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.展开更多
Realization of a magnetization reversal by an external electric field is vital for developing ultra-low-power spintronic devices.In this report,starting from energy band engineering,a general design principle is propo...Realization of a magnetization reversal by an external electric field is vital for developing ultra-low-power spintronic devices.In this report,starting from energy band engineering,a general design principle is proposed for achieving electrical manipulation of a nonvolatile 180°magnetization reversal.A half semiconductor(HSC)and a bipolar magnetic semiconductor(BMS)are selected as the model of magnetic layers,whose conduction-band minimum and valence-band maximum are in the same and opposite spin states,respectively.Based on the analysis of virtual hopping and tight-binding models,the interlayer coupling of HSC/insulator/BMS devices is successfully tuned between ferromagnetic and antiferromagnetic interactions by varying electric field directions.Moreover,the interlayer coupling nearly disappears after removing the electric field,proving the nonvolatile magnetization reversal.Using first-principles calculations,the feasibility of present design strategy is further confirmed by a representative device with the structure of CrBr3/h-BN/2H-VSe_(2).This design guideline and physical phenomena may open an avenue to explore magnetoelectric coupling mechanisms and develop next-generation spintronic devices.展开更多
The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energ...The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energy source establishment and provide references to develop an effective and stable project of producing methane and generating electricity.展开更多
Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to...Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.展开更多
In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process...In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process is presented. The synthesis problem is formulated as a mixed-integer nonlinear programming(MINLP) problem,which is solved by simulated annealing algorithm under a random procedure to explore the optimal operating parameters and the distillation sequence structure. The shaft work targeting method is used to evaluate the minimum energy cost of the corresponding separation system during the optimization without any need for a detailed design for the heat exchanger network(HEN) and the refrigeration system(RS). The method presented in the paper can dramatically reduce the scale and complexity of the problem. A case study of ethylene cold-end separation is used to illustrate the application of the approach. Compared with the original industrial scheme, the result is encouraging.展开更多
The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat l...The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat loss and friction loss were considered. Through solving numerical equations,the in-cylinder pressure of compression stroke under different compression ratios was calculated,energy transfer and conversion process was analyzed,and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the com-pressed gas accounted for about 70%. The compression energy gradually increased with the increasing com-pression ratio. When the compression ratio was more than 7. 5,the actual compression energy increased slowly and the energy error between simulation and test decreased.展开更多
A series of Sm doped ZnO based thermoelectric materials were prepared by mechanical alloying and spark plasma sintering.The effects of Sm doping on ZnO based thermoelectric materials were systematically studied by mea...A series of Sm doped ZnO based thermoelectric materials were prepared by mechanical alloying and spark plasma sintering.The effects of Sm doping on ZnO based thermoelectric materials were systematically studied by means of electrical and thermal properties tests combined with first principles calculations of energy band,density of states and elastic constants.The experimental results show that the substitution of Sm at Zn site could cause the valence band and conduction band moving down,and the 4f orbitals of Sm could contribute to the increase of the density of states near the Fermi level,corresponding to the increase of carrier concentration and electrical conductivity.The substitution of Sm at Zn site could cause the decrease of effective mass and Seebeck coefficient.The substitution of Sm at Zn site could lead to the decrease of Young's modulus and lattice thermal conductivity,which contribute to the decrease of thermal conductivity.Finally,the highest dimensionless thermoelectric figure of merit(ZT)value has been increased to 0.346,which is 3.48 times as pristine ZnO.展开更多
Photoelectrochemical(PEC)water splitting is considered as an ideal technology to produce hydrogen.Photogenerated carrier migration is one of the most important roles in the whole process of PEC water splitting.It incl...Photoelectrochemical(PEC)water splitting is considered as an ideal technology to produce hydrogen.Photogenerated carrier migration is one of the most important roles in the whole process of PEC water splitting.It includes bulk transfer inside of the photoelectrode and the exchange at the solid-liquid interface.The energy barriers during the migration process lead to the dramatic recombination of photogenerated hot carrier and the reducing of their redox capacity.Thus,an applied bias voltage should be provided to overcome these energy barriers,which brings the additional loss of energy.Plentiful researches indicate that some methods for the regulation of photogenerated hot carrier,such as p-n junction,unique transfer nanochannel,tandem nanostructure and Z-Scheme transfer structure et al.,show great potential to achieve high-efficient PEC water overall splitting without any applied bias voltage.Up to now,many reviews have summarized and analyzed the methods to enhance the PEC or photocatalysis water splitting from the perspectives of materials,nanostructures and surface modification etc.However,few of them focus on the topic of photogenerated carrier transfer regulation,which is an important and urgent developing technique.For this reason,this review focuses on the regulation of photogenerated carriers generated by the photoelectrodes and summarizes different advanced methods for photogenerated carrier regulation developed in recent years.Some comments and outlooks are also provided at the end of this review.展开更多
Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy co...Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization.展开更多
A model of an energy selective electron (ESE) engine with linear heat leakage and Lorentzian transmission probability is established in this paper.The expressions for the main performance parameters of the ESE engine ...A model of an energy selective electron (ESE) engine with linear heat leakage and Lorentzian transmission probability is established in this paper.The expressions for the main performance parameters of the ESE engine operating as a heat engine or a refrigerator are derived by using the theory of finite time thermodynamics.The optimum performances of the ESE engine are explored and the influences of the heat leakage,the central energy level of the resonance,and the width of the resonance on the performance of the ESE engine are analyzed by using detailed numerical examples.The optimal operation regions of power output and efficiency (or cooling load and coefficient of performance (COP)) are also discussed.Moreover,the performances of the ESE engine with Lorentzian transmission probability are compared with those with rectangular transmission probability.It is shown that the power output versus efficiency (or cooling load versus COP) characteristic curves with and without heat leakage are all closed loop-shaped ones.The efficiency (or COP) of the ESE engine decreases as the heat leakage increases.It is found that as the resonance width increases,the power output and efficiency (or cooling load and COP) increase to a maximum and then decrease due to the finite range of energies which contribute positively to the power generation or refrigeration in the electron system.Especially,when heat leakage is taken into account,the characteristic curves of maximum efficiency (or maximum COP) versus half resonance width are parabolic-like ones,which are quite different from the monotonic decreasing characteristic curves obtained in previous analyses without considering heat leakage.The results obtained in this paper can provide some theoretical guidelines for the design and operation of practical electron energy conversion devices such as solid-state thermionic refrigerators.展开更多
SrFBiS_(2) is a quaternary n-type semiconductor with rock-salt-type BiS_(2) and fluorite-type SrF layers alternately stacked along the c axis.The tunability of the crystal and electronic structures as well as the intr...SrFBiS_(2) is a quaternary n-type semiconductor with rock-salt-type BiS_(2) and fluorite-type SrF layers alternately stacked along the c axis.The tunability of the crystal and electronic structures as well as the intrinsically low thermal conductivity make this compound a promising parent material for thermo-electric applications.In the current work,we show that alloying of Se and S in SrFBi_(S) 2 reduces the optical band gap with the second conduction band serving as an electron-transport medium,simultaneously increasing the electron concentration and effective mass.In addition,the raw material Bi_(2)Se_(3) is shown to act as liquid adjuvant during the annealing process,favoring preferred-orientation grain growth and forming strengthen microstructural texturing in bulk samples after hot-pressed sintering.Highly ordered lamellar grains are stacked perpendicular to the pressure direction,leading to enhanced mobility along this direction.The synthetic effect results in a maximum power factor of 5.58 μm W cm^(-1) K^(-2) at 523 K for SrFBiSSe and a peak zT=0.34 at 773 K,enhancements of 180%compared with those of pristine SrFBiS_(2).展开更多
The School of Energy Research at Xiamen University (SER-XMU) was founded in 2007, to consolidate and ex-pand research in the areas of Physical Energy, Chemical Energy, Bio-energy, Energy Efficiency and Energy Econom-i...The School of Energy Research at Xiamen University (SER-XMU) was founded in 2007, to consolidate and ex-pand research in the areas of Physical Energy, Chemical Energy, Bio-energy, Energy Efficiency and Energy Econom-ics. SER-XMU is seeking senior scientists and experienced engineers to serve as Thrust Leaders and Principal Inves-展开更多
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
文摘New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating excessive exploitation of oil resources,a stance strongly supported by governments.However,new energy vehicles possess certain drawbacks in terms of price and usability compared to traditional counterparts.Therefore,external support is imperative for their development.This paper delineates four main sections:the background of new energy vehicle promotion and application,a comparative analysis of domestic and foreign promotion models,specific promotion suggestions,and future development prospects.By leveraging insights from economic analysis,the optimal promotion model for new energy vehicles is elucidated.
基金Supported by the National Basic Research Program of China(2014CB239703)the National Natural Science Foundation of China(21336003)the Science and Technology Commission of Shanghai Municipality(14DZ2250800)
文摘This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch from proton exchange membranes(PEMs) to hydroxide exchange membranes(HEMs) may lead to a new-generation of affordable electrochemical energy devices including fuel cells, electrolyzers, and solar hydrogen generators. For lithium-ion batteries, a series of advancements in design and chemistry are required for electric vehicle and energy storage applications. Manufacturing process development and optimization of the LiF eP O_4/C cathode materials and several emerging novel anode materials are also discussed using the authors' work as examples.Design and manufacturing process of lithium-ion battery electrodes are introduced in detail, and modeling and optimization of large-scale lithium-ion batteries are also presented. Electrochemical energy materials and device innovations can be further prompted by better understanding of the fundamental transport phenomena involved in unit operations.
基金supported by the National Natural Science Foundation of China (Grant No. 51872006)the Excellent Youth Project of Natural Science Foundation of Anhui Province of China (Grant No. 2208085Y17)。
文摘The binary CoSb_(3) skutterudite thermoelectric material has high thermal conductivity due to the covalent bond between Co and Sb, and the thermoelectric figure of merit, ZT, is very low. The thermal conductivity of CoSb_(3) materials can be significantly reduced through phonon engineering, such as low-dimensional structure, the introduction of nano second phases,nanointerfaces or nanopores, which greatly improves their ZT values. The phonon engineering can optimize significantly the thermal transport properties of CoSb_(3)-based materials. However, the improvement of the electronic transport properties is not obvious, or even worse. Energy band and charge-carrier engineering can significantly improve the electronic transport properties of CoSb_(3)-based materials while optimizing the thermal transport properties. Therefore, the decoupling of thermal and electronic transport properties of CoSb_(3)-based materials can be realized by energy band and charge-carrier engineering. This review summarizes some methods of optimizing synergistically the electronic and thermal transport properties of CoSb_(3) materials through the energy band and charge-carrier engineering strategies. Energy band engineering strategies include band convergence or resonant energy levels caused by doping/filling. The charge-carrier engineering strategy includes the optimization of carrier concentration and mobility caused by doping/filling, forming modulation doped structures or introducing nano second phase. These strategies are effective means to improve performance of thermoelectric materials and provide new research ideas of development of high-efficiency thermoelectric materials.
文摘New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.
基金jointly supported by the National Natural Science Foundation of China(42376222,U22A20581,and 42076069)Key Research and Development Program of Hainan Province(ZDYF2024GXJS002)China Geological Survey(DD20230402)。
文摘A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金2020 Donghua University’s educational reform project of integration of specialty and innovation,China(No.ZCRH2020002)Excellent reform pilot course of Donghua University Built Environment,China.
文摘The improvement of students’abilities is of great significance to discover the relevant scientific problems in daily life,to analyze and solve practical problems,to trigger scientific inspiration,and to encourage innovation and entrepreneurship.Taken the course entitled Built Environment(BE)as an example,this study introduces five lecture cases combining with engineering practices,and examines the evaluation of teaching and learning effect on student outcomes.The cases consider various problems to be solved urgently in an actual project,and evaluate the student outcomes by statistically analyzing the questionnaires.Most of the students actively participate in five cases and cheerfully share their achievements.More than 85%of students are satisfied with the engineering practice and the learning proposal,and convey a little or even significantly change in their understanding of the employment prospects.
基金National Natural Science Foundation of China,Grant/Award Number:41941018State Key Laboratory for GeoMechanics and Deep Underground Engineering,Grant/Award Number:SKLGDUEK202201。
文摘Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.
基金supported by the National Natural Science Foundation of China(Grant No.52271238)the Liaoning Revitalization Talents Program(Grant No.XLYC2002075)+1 种基金the Research Funds for the Central University(Grant Nos.N2202004,and N2102012)funding from the Alexander von Humboldt Foundation(Grant No.CHN 1225715 HFST-P).
文摘Realization of a magnetization reversal by an external electric field is vital for developing ultra-low-power spintronic devices.In this report,starting from energy band engineering,a general design principle is proposed for achieving electrical manipulation of a nonvolatile 180°magnetization reversal.A half semiconductor(HSC)and a bipolar magnetic semiconductor(BMS)are selected as the model of magnetic layers,whose conduction-band minimum and valence-band maximum are in the same and opposite spin states,respectively.Based on the analysis of virtual hopping and tight-binding models,the interlayer coupling of HSC/insulator/BMS devices is successfully tuned between ferromagnetic and antiferromagnetic interactions by varying electric field directions.Moreover,the interlayer coupling nearly disappears after removing the electric field,proving the nonvolatile magnetization reversal.Using first-principles calculations,the feasibility of present design strategy is further confirmed by a representative device with the structure of CrBr3/h-BN/2H-VSe_(2).This design guideline and physical phenomena may open an avenue to explore magnetoelectric coupling mechanisms and develop next-generation spintronic devices.
文摘The paper aims to demonstrate the system of SANYI biogas power generation by two-step method which can produce methane and generate electricity effectively and stably.So it can be stable synchronization meshwork energy source establishment and provide references to develop an effective and stable project of producing methane and generating electricity.
基金funded by the“Hot Dry Rock Resources Exploration and Production Demonstration Project”of the China Geological Survey(DD20190131,DD20190135,DD20211336).
文摘Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.
基金the National Basic Research Program of China(2010CB720500)the National Natural Science Foundation of China(21176178)
文摘In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method,an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process is presented. The synthesis problem is formulated as a mixed-integer nonlinear programming(MINLP) problem,which is solved by simulated annealing algorithm under a random procedure to explore the optimal operating parameters and the distillation sequence structure. The shaft work targeting method is used to evaluate the minimum energy cost of the corresponding separation system during the optimization without any need for a detailed design for the heat exchanger network(HEN) and the refrigeration system(RS). The method presented in the paper can dramatically reduce the scale and complexity of the problem. A case study of ethylene cold-end separation is used to illustrate the application of the approach. Compared with the original industrial scheme, the result is encouraging.
基金Supported by the National Natural Science Foundation of China(51006010)the Program of Introducing Talents of Discipline to Universities(B12022)
文摘The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat loss and friction loss were considered. Through solving numerical equations,the in-cylinder pressure of compression stroke under different compression ratios was calculated,energy transfer and conversion process was analyzed,and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the com-pressed gas accounted for about 70%. The compression energy gradually increased with the increasing com-pression ratio. When the compression ratio was more than 7. 5,the actual compression energy increased slowly and the energy error between simulation and test decreased.
基金by the Natural Science Foundation of Hubei Province(2021CFB009)the Guiding Project of Hubei Province in 2022 and the School Youth Fund of Wuhan Donghu University。
文摘A series of Sm doped ZnO based thermoelectric materials were prepared by mechanical alloying and spark plasma sintering.The effects of Sm doping on ZnO based thermoelectric materials were systematically studied by means of electrical and thermal properties tests combined with first principles calculations of energy band,density of states and elastic constants.The experimental results show that the substitution of Sm at Zn site could cause the valence band and conduction band moving down,and the 4f orbitals of Sm could contribute to the increase of the density of states near the Fermi level,corresponding to the increase of carrier concentration and electrical conductivity.The substitution of Sm at Zn site could cause the decrease of effective mass and Seebeck coefficient.The substitution of Sm at Zn site could lead to the decrease of Young's modulus and lattice thermal conductivity,which contribute to the decrease of thermal conductivity.Finally,the highest dimensionless thermoelectric figure of merit(ZT)value has been increased to 0.346,which is 3.48 times as pristine ZnO.
基金financially supported by the National Natural Science Foundation of China,China(Grant Nos.41506093)。
文摘Photoelectrochemical(PEC)water splitting is considered as an ideal technology to produce hydrogen.Photogenerated carrier migration is one of the most important roles in the whole process of PEC water splitting.It includes bulk transfer inside of the photoelectrode and the exchange at the solid-liquid interface.The energy barriers during the migration process lead to the dramatic recombination of photogenerated hot carrier and the reducing of their redox capacity.Thus,an applied bias voltage should be provided to overcome these energy barriers,which brings the additional loss of energy.Plentiful researches indicate that some methods for the regulation of photogenerated hot carrier,such as p-n junction,unique transfer nanochannel,tandem nanostructure and Z-Scheme transfer structure et al.,show great potential to achieve high-efficient PEC water overall splitting without any applied bias voltage.Up to now,many reviews have summarized and analyzed the methods to enhance the PEC or photocatalysis water splitting from the perspectives of materials,nanostructures and surface modification etc.However,few of them focus on the topic of photogenerated carrier transfer regulation,which is an important and urgent developing technique.For this reason,this review focuses on the regulation of photogenerated carriers generated by the photoelectrodes and summarizes different advanced methods for photogenerated carrier regulation developed in recent years.Some comments and outlooks are also provided at the end of this review.
基金Supported by the National Natural Science Foundation of China(21176178)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13B02)
文摘Crude oil distillation is important in refining industry. Operating variables of distillation process have a critical effect on product output value and energy consumption. However, the objectives of minimum energy consumption and maximum product output value do not coordinate with each other and do not lead to the maximum economic benefit of a refinery. In this paper, a systematic optimization approach is proposed for the maximum annual economic benefit of an existing crude oil distillation system, considering product output value and energy consumption simultaneously. A shortcut model in Aspen Plus is used to describe the crude oil distillation and the pinch analysis is adopted to identify the target of energy recovery. The optimization is a nonlinear programming problem and solved by stochastic algorithm of particle warm optimization.
基金supported by the National Natural Science Foundation of China (Grant No. 10905093)the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-04-1006)the Foundation for the Author of National Excellent Doctoral Dissertation ofChina (Grant No. 200136)
文摘A model of an energy selective electron (ESE) engine with linear heat leakage and Lorentzian transmission probability is established in this paper.The expressions for the main performance parameters of the ESE engine operating as a heat engine or a refrigerator are derived by using the theory of finite time thermodynamics.The optimum performances of the ESE engine are explored and the influences of the heat leakage,the central energy level of the resonance,and the width of the resonance on the performance of the ESE engine are analyzed by using detailed numerical examples.The optimal operation regions of power output and efficiency (or cooling load and coefficient of performance (COP)) are also discussed.Moreover,the performances of the ESE engine with Lorentzian transmission probability are compared with those with rectangular transmission probability.It is shown that the power output versus efficiency (or cooling load versus COP) characteristic curves with and without heat leakage are all closed loop-shaped ones.The efficiency (or COP) of the ESE engine decreases as the heat leakage increases.It is found that as the resonance width increases,the power output and efficiency (or cooling load and COP) increase to a maximum and then decrease due to the finite range of energies which contribute positively to the power generation or refrigeration in the electron system.Especially,when heat leakage is taken into account,the characteristic curves of maximum efficiency (or maximum COP) versus half resonance width are parabolic-like ones,which are quite different from the monotonic decreasing characteristic curves obtained in previous analyses without considering heat leakage.The results obtained in this paper can provide some theoretical guidelines for the design and operation of practical electron energy conversion devices such as solid-state thermionic refrigerators.
基金This work was financially supported by the National Key Research and Development Program of China(2018YFA0702100)the National Natural Science Foundation of China(21771123,52072234)J.Zhang is grateful for the support by the Open Project of Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices(KJS2023).
文摘SrFBiS_(2) is a quaternary n-type semiconductor with rock-salt-type BiS_(2) and fluorite-type SrF layers alternately stacked along the c axis.The tunability of the crystal and electronic structures as well as the intrinsically low thermal conductivity make this compound a promising parent material for thermo-electric applications.In the current work,we show that alloying of Se and S in SrFBi_(S) 2 reduces the optical band gap with the second conduction band serving as an electron-transport medium,simultaneously increasing the electron concentration and effective mass.In addition,the raw material Bi_(2)Se_(3) is shown to act as liquid adjuvant during the annealing process,favoring preferred-orientation grain growth and forming strengthen microstructural texturing in bulk samples after hot-pressed sintering.Highly ordered lamellar grains are stacked perpendicular to the pressure direction,leading to enhanced mobility along this direction.The synthetic effect results in a maximum power factor of 5.58 μm W cm^(-1) K^(-2) at 523 K for SrFBiSSe and a peak zT=0.34 at 773 K,enhancements of 180%compared with those of pristine SrFBiS_(2).
文摘The School of Energy Research at Xiamen University (SER-XMU) was founded in 2007, to consolidate and ex-pand research in the areas of Physical Energy, Chemical Energy, Bio-energy, Energy Efficiency and Energy Econom-ics. SER-XMU is seeking senior scientists and experienced engineers to serve as Thrust Leaders and Principal Inves-