期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Improved Breakdown Strength in(Ba_(0.6)Sr_(0.4))_(0.85)Bi_(0.1)TiO_3 Ceramics with Addition of CaZrO_3 for Energy Storage Application 被引量:1
1
作者 汪小红 LI Zhenlin +2 位作者 CHEN Fangyuan 高俊雄 Lü Wenzhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期545-551,共7页
(Ba(0.6) Sr(0.4))(0.85) Bi(0.1) TiO3 ceramics doped with x wt%CaZrO3(x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of(Ba... (Ba(0.6) Sr(0.4))(0.85) Bi(0.1) TiO3 ceramics doped with x wt%CaZrO3(x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of(Ba(0.6)Sr(0.4))(0.85) Bi(0.1) TiO3 ceramics were investigated. X-ray diffraction results indicated a pure cubic perovskite structure for all samples and that the lattice parameter increased till x=5 and then slightly decreased. A homogenous microstructure was observed with the addition of CaZrO3. Dielectric measurements revealed a relaxor-like characteristic for all samples and that the diffusivity γ reached the maximum value of 1.78 at x=5. With the addition of CaZrO3, the dielectric constant dependence on electric field was weakened, insulation resistivity enhanced and dielectric breakdown strength improved obviously and reached 19.9 k V/mm at x=7.5. In virtue of low dielectric loss(tan d〈0.001 5), moderate dielectric constant(er 〉1 500) and high breakdown strength(Eb 〉17.5 k V/mm), the CaZrO3 doped(Ba(0.6)Sr(0.4))0.85 Bi(0.1) TiO3 ceramic is a potential candidate material for high power electric applications. 展开更多
关键词 breakdown strength dielectric properties relaxor characteristic energy storage (Ba Sr) TiO3
下载PDF
The temperature-dependent fracture strength model for ultra-high temperature ceramics 被引量:13
2
作者 Weiguo Li Fan Yang Daining Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期235-239,共5页
Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of e... Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of equivalence between heat energy and strain energy. Based on this equivalence, we assume the existence of a constant maximum storage of energy that includes both the strain energy and the corresponding equivalent heat energy. A temperaturedependent fracture strength model is then developed for ultrahigh temperature ceramics (UHTCs). Model predictions for UHTCs, HfB2, TiC and ZrB2, are presented and compared with the experimental results. These predictions are found to be largely consistent with experimental results. 展开更多
关键词 Ultra-high temperature ceramics · Equivalent energy · Critical failure energy · strength model
下载PDF
Spatial relationship between energy dissipation and vortex tubes in channel flow 被引量:3
3
作者 曹列凯 李丹勋 +1 位作者 陈槐 刘春晶 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第4期575-585,共11页
The spatial relationship between the energy dissipation slabs and the vortex tubes is investigated based on the direct numerical simulation(DNS) of the channel flow. The spatial distance between these two structures... The spatial relationship between the energy dissipation slabs and the vortex tubes is investigated based on the direct numerical simulation(DNS) of the channel flow. The spatial distance between these two structures is found to be slightly greater than the vortex radius. Comparison of the core areas of the vortex tubes and the dissipation slabs gives a mean ratio of 0.16 for the mean swirling strength and that of 2.89 for the mean dissipation rate. These results verify that in the channel flow the slabs of intense dissipation and the vortex tubes do not coincide in space. Rather they appear in pairs offset with a mean separation of approximately 10η. 展开更多
关键词 energy dissipation vortex channel flow swirling strength turbulent structure
原文传递
Dielectric phenomena and electrical energy storage of poly(vinylidene fluoride) based high-k polymers 被引量:2
4
作者 Yingke Zhu Pingkai Jiang +1 位作者 Zhicheng Zhang Xingyi Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第11期2027-2035,共9页
Polymeric dielectrics have wide range of applications in the field of electrical energy storage because of their light weight and easy processing. However, the state-of-the-art polymer dielectrics, such as biaxially o... Polymeric dielectrics have wide range of applications in the field of electrical energy storage because of their light weight and easy processing. However, the state-of-the-art polymer dielectrics, such as biaxially orientated polypropylene, could not meet the demand of minimization of electronic devices because of its low energy density. Recently, poly(vinylidene fluoride) (PVDF) based ferroelectric polymers have attracted considerable interests for energy storage applications because of their high permittivity and high breakdown strength. Unfortunately, the high dielectric loss and/or high remnant polarization of PVDF-based polymers seriously limits their practical applications for electrical energy storage. Since the discovery of relaxor ferroelectric behavior was firstly reported in irradiated poly(vinylidene fluoride- trifluoroethylene) (P(VDF-TrFE)) copolyrner, many strategies have been developed to enhanced the electrical energy storage capability, including copolymerization, grafting, blending and fabricating of multilayer How these methods affect the polymorphs, crystallinity, crystal size of PVDF-based polymers and the connection between these microstructures and their corresponding energy storage properties are discussed in detail. 展开更多
关键词 PVDF Ferroelectric polymer Copolymerization Grafting energy storage Dielectric constant Dielectric loss Breakdown strength
原文传递
Influence of Features of Interphase Boundaries on Mechanical Properties and Fracture Pattern in Metal-Ceramic Composites 被引量:1
5
作者 Sergey Psakhie Vladimir Ovcharenko +5 位作者 Baohai Yu Evgeny Shilko Sergey Astafurov Yury Ivanov Alexey Byeli Alexey Mokhovikov 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第11期1025-1034,共10页
The results of a theoretical study on the influence of strength of interphase boundaries in metal-ceramic composite on macroscopical characteristics of composite response such as strength, deformation capacity, fractu... The results of a theoretical study on the influence of strength of interphase boundaries in metal-ceramic composite on macroscopical characteristics of composite response such as strength, deformation capacity, fracture energy and fracture pattern are presented. The study was conducted by means of computer-aided simulation by means of movable cellular automaton method taking account of a developed "mesoscopical" structural model of particle-reinforced composite. The strength of interphase boundaries is found to be a key structural factor determining not only the strength properties of metal-ceramic composite, but also the pattern and rate of fracture. The principles for achievement of the high-strength values of particle/binder interfaces in the metal-ceramic composition due to the formation of the wide transition zones (areas of variable chemical composition) at the interphase boundaries are discussed. Simulation results confirm that such transition zones provide a change in fracture mechanism and make the achievement of a high-strength and a high deformation capacity of metal-ceramic composite possible. 展开更多
关键词 Metal--ceramic composites Particle-reinforced composite Interphase boundaries Discrete element based analysis strength and fracture energy Fracture pattern
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部