Comparative analysis between the quantitative data of active faults and seismicity reveals that a complete earthquake recurrence cycle includes the characteristic earthquake and the sub-maxima earthquakes in-between. ...Comparative analysis between the quantitative data of active faults and seismicity reveals that a complete earthquake recurrence cycle includes the characteristic earthquake and the sub-maxima earthquakes in-between. The magnitude of the sub-maxima events is correlated with the elapsed time of the characteristic earthquake and the slip rate of the fault. The fault displacement includes the major stick-slip generated by the characteristic earthquakes and the minor stick-slip by the sub-maxima ones. The magnitude-frequency relationship still works in the complete recurrence cycle. The energy accumulation in the cycle is divided approximately into four phases, and the seismicity differs at each phase. The relation of the maximum displacement with the average displacement of the characteristic earthquake suggests the partitioning of deformation between the characteristic and the sub-maxima earthquakes. Based on the above analysis, relevant mathematical equations are put forward for the quantitative assessment of the potential magnitude and earthquake risk of seismogenic tectonics. Tentative study has been carried out in this aspect in some areas of Tianshan.展开更多
Using seismic parameters, the characteristics of the seismic activity in various seismotectonic regions of Tiaushan were studied in this paper. These regions are going through different stages of seismic energy accumu...Using seismic parameters, the characteristics of the seismic activity in various seismotectonic regions of Tiaushan were studied in this paper. These regions are going through different stages of seismic energy accumulation. Current seismic risk levels of these areas were analyzed synthetically by the tectonic movement rates, as well as the characteristics of the seismic activity and the recurrence intervals of strong earthquakes. We preliminarily studied the characteristics of seismic activity in different seismic energy accumulating stages. The result shows that the characteristics of the seismic activity in various seismotectonic regions of the Tiaushan area are influenced, not only by the regional tectonic movement, but also by the energy accumulating stage of various seismic tectonics. In the intense tectonic movement areas, it is important to estimate its stage of energy accumulating in order to predict the upper limit of the potential earthquake magnitude. In the less intense tectonic movement areas, the estimating of the stage of energy accumulation will help us recognize the dangerous level of the potential strong earthquake. The study shows that the seismotectonic regions in southern Tiaushan have reached the mid-stage and late-stage of energy accumulation, with a higher seismic activity and thus a higher seismic dangerous level than those in the northern and middle Tiaushan. The earthquake risk of southern Tianshan is up to Ms7.0, while that of the middle Tiaushan is up to Ms6.0 and that of northern Tiaushan is only around Ms5.0 - 6.0.展开更多
This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consump...This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.展开更多
Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and rene...Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and renewable energy is also known. Calculated accumulated energy in Earth land from 1971 to 2018 corresponds to 40% of IPCC Global Energy Inventory and calculated Atmosphere temperature increase from 1971 to 2018 corresponds to 100% of actual measurements.展开更多
The mechanical and wear properties of CFRP laminate were investigated using a method of cycling low velocity impact, to study the trend and mechanism of impact resistance of the CFRP laminate under repeated impact dur...The mechanical and wear properties of CFRP laminate were investigated using a method of cycling low velocity impact, to study the trend and mechanism of impact resistance of the CFRP laminate under repeated impact during its service process. The interface responses of CFRP laminate under di erent impact kinetic energy during the cycling impact process were studied were studied experimentally, such as impact contact duration, deformation and energy absorption. The worn surface morphologies were observed through optical microscopy and a 3?D surface profiler and the cross?sectional morphologies were observed through SEM to investigate the mechanism of impact material dam?age. Based on a single?degree?of?freedom damping vibration model, the normal contact sti ness and contact damp?ing of the material in di erent wear stages were calculated. It shows the failure process of CFRP laminate damaged by accumulated absorption energy under the cycling impact of di erent initial kinetic energy. The results indicate that the sti ness and damping coe cients will change at di erent impact velocities or cycle numbers. The damage mechanism of CFRP laminates under cycling low kinetic energy is delamination. After repeated experiments, it was found that there was a threshold value for the accumulated absorption energy before the failure of the CFRP laminate.展开更多
In this paper, observation data in 25 GPS reference stations of China have been analyzed by calculating GPS position coordinate time-series with GIPSY. Result shows there is an obvious trend variation in such time-ser...In this paper, observation data in 25 GPS reference stations of China have been analyzed by calculating GPS position coordinate time-series with GIPSY. Result shows there is an obvious trend variation in such time-series. The trend variations of time series along the longitude and latitude coordinate reflect the motion of each position in the global-plate, in which the trend variation in the vertical direction reveals some large-scale construction information or reflects the local movement around the positions. The analysis also shows that such time-series have a variation cycle of nearly 1.02 a, but the reason still remains to be further studied. At the end of this paper, response of the time-series to MS=8.1 Kunlunshan earthquake was analyzed, and the seismogenic process of MS=8.1 Kunlunshan earthquake, according to the time proceeding and the feature of anomaly, was divided into 3 phases-changes in blocks with forces, strain accumulation, quick accumulation and slow release of energy. At the initial stage of seismogenic process of MS=8.1 earthquake and at the imminent earthquake, coseismic process as well as during the post earthquake recovery, anomaly in vertical direction is always in a majority. The anomalous movement in vertical direction at the initial stage resulted in a blocking between faults, while at the middle stage of seismogenic process, the differential movement between blocks are in a majority, which is the major reason causing energy accumulating at the blocking stage of faults.展开更多
In this paper,the main purpose is to analyze and research the characteristics of the geoelectric field observed data with a long time span and large amplitude abnormal change,at the Lhasa geomagnetic station( hereafte...In this paper,the main purpose is to analyze and research the characteristics of the geoelectric field observed data with a long time span and large amplitude abnormal change,at the Lhasa geomagnetic station( hereafter referred to as "Lhasa station "),before and after the Nepal M_S8. 1 strong earthquake,which occurred on April 25,2015. Based on the observation conditions,the observation system,and the observed data of Lhasa station preliminary discussed,the main characteristics of the abnormal change and evolution process are analyzed and studied,using the following two methods; the "synthesis energy accumulation"and the "power as MSA spectrum"analysis,from the two aspects of the"Time Domain"and"Frequency Domain. "The results show that the abnormal change of the geo-electric field observation of Lhasa station experienced a development stage following the process of "trend change- disturbance change- earthquake period-recovery period",and an evolution process of "low frequency change- high frequency change- smooth change- high frequency change ",before and after the Nepal M_S8. 1strong earthquake. Comprehensive analysis shows that the variation characteristics and evolution process of the geo-electric field at Lhasa station are basically consistent with the results of the relevant mechanism and phenomenon research. So far,this is valuable information with certain objectivity,which is typical and representative to reflect the whole process of the gestation, occurrence and complete development of such strongearthquakes.展开更多
Early theoretical analyses indicated that the tropics and extratropics are relatively independent due to the existence of critical latitudes.However,considerable observational evidence has shown that a clear dynamical...Early theoretical analyses indicated that the tropics and extratropics are relatively independent due to the existence of critical latitudes.However,considerable observational evidence has shown that a clear dynamical link exists between the tropics and midlatitudes.To better understand such atmospheric teleconnection,several theories of wave energy propagation are reviewed in this paper:(1) great circle theory,which reveals the characteristics of Rossby waves propagating in the spherical atmosphere;(2) westerly duct theory,which suggests a "corridor" through which the midlatitude disturbances in one hemisphere can propagate into the other hemisphere;(3) energy accumulation-wave emanation theory,which proposes processes through which tropical disturbances can affect the atmospheric motion in higher latitudes;(4) equatorial wave expansion theory,which further explains the physical mechanisms involved in the interaction between the tropics and extratropics;and(5) meridional basic flow theory,which argues that stationary waves can propagate across the tropical easterlies under certain conditions.In addition,the progress made in diagnosing wave-flow interaction,particularly for Rossby waves,inertial-gravity waves,and Kelvin waves,is also reviewed.The meridional propagation of atmospheric energy exhibits significant annual and interannual variations,closely related to ENSO and variation in the westerly jets and tropical upper-tropospheric troughs,amongst others.展开更多
Tropical cyclone precipitation(TCP)accounts for 10%-40%of the boreal summer precipitation that occurs over Southeast China(SEC),causing flood disasters and serious damage.On the decadal scale,TCP increases significant...Tropical cyclone precipitation(TCP)accounts for 10%-40%of the boreal summer precipitation that occurs over Southeast China(SEC),causing flood disasters and serious damage.On the decadal scale,TCP increases significantly in SEC while TC frequency decreases in the western North Pacific(WNP)during 1980-2019.Therefore,variations in TCP and the corresponding physical mechanism are investigated in this study.First,an empirical statistical method is introduced to quantify the TCP amount based on accumulated cyclone energy(ACE)and TC frequency with the TCP anomaly decomposed into three items(rainfall frequency,rainfall intensity,and nonlinear item).ACE,as the integration of TC intensity and frequency,is a more effective index than TC frequency for depicting the characteristics of TCP because the contribution of rainfall frequency represented by ACE is higher than that of TC frequency.Then,the physical mechanism affecting the WNP TC activities and TCP in SEC are inspected.Positive sea surface temperature anomaly(SSTA)over the tropical eastern Pacific(TEP)in winter can trigger variations of air-sea interaction over the tropical Pacific,including low-level divergent winds,mid-tropospheric descent flows,high-level convergent winds coupled with negative anomalies of vorticity and humidity over the tropical western Pacific(TWP)in the next summer.These dynamic conditions provide unfavorable environments for TC activities in the WNP and constrain TCP in SEC.Furthermore,more significantly negative SSTA events in the TEP facilitate enhanced ACE along with positive relative vorticity,relative humidity,and upwelling vertical winds anomalies over the coast of SEC after 1998,which is a reasonable explanation for the increasing TCP in SEC.展开更多
文摘Comparative analysis between the quantitative data of active faults and seismicity reveals that a complete earthquake recurrence cycle includes the characteristic earthquake and the sub-maxima earthquakes in-between. The magnitude of the sub-maxima events is correlated with the elapsed time of the characteristic earthquake and the slip rate of the fault. The fault displacement includes the major stick-slip generated by the characteristic earthquakes and the minor stick-slip by the sub-maxima ones. The magnitude-frequency relationship still works in the complete recurrence cycle. The energy accumulation in the cycle is divided approximately into four phases, and the seismicity differs at each phase. The relation of the maximum displacement with the average displacement of the characteristic earthquake suggests the partitioning of deformation between the characteristic and the sub-maxima earthquakes. Based on the above analysis, relevant mathematical equations are put forward for the quantitative assessment of the potential magnitude and earthquake risk of seismogenic tectonics. Tentative study has been carried out in this aspect in some areas of Tianshan.
基金The research wasjointlysupported by National NaturalScience Foundation of China (40262002) Joint Earthquake Science Foundation (103008 ,103056) the Key Scienceand Technologies R&D Program of Xinjiang Uygur Autonomous Region,China (20033316) .
文摘Using seismic parameters, the characteristics of the seismic activity in various seismotectonic regions of Tiaushan were studied in this paper. These regions are going through different stages of seismic energy accumulation. Current seismic risk levels of these areas were analyzed synthetically by the tectonic movement rates, as well as the characteristics of the seismic activity and the recurrence intervals of strong earthquakes. We preliminarily studied the characteristics of seismic activity in different seismic energy accumulating stages. The result shows that the characteristics of the seismic activity in various seismotectonic regions of the Tiaushan area are influenced, not only by the regional tectonic movement, but also by the energy accumulating stage of various seismic tectonics. In the intense tectonic movement areas, it is important to estimate its stage of energy accumulating in order to predict the upper limit of the potential earthquake magnitude. In the less intense tectonic movement areas, the estimating of the stage of energy accumulation will help us recognize the dangerous level of the potential strong earthquake. The study shows that the seismotectonic regions in southern Tiaushan have reached the mid-stage and late-stage of energy accumulation, with a higher seismic activity and thus a higher seismic dangerous level than those in the northern and middle Tiaushan. The earthquake risk of southern Tianshan is up to Ms7.0, while that of the middle Tiaushan is up to Ms6.0 and that of northern Tiaushan is only around Ms5.0 - 6.0.
文摘This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.
文摘Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and renewable energy is also known. Calculated accumulated energy in Earth land from 1971 to 2018 corresponds to 40% of IPCC Global Energy Inventory and calculated Atmosphere temperature increase from 1971 to 2018 corresponds to 100% of actual measurements.
基金National Natural Science Foundation of China(Grant Nos.U1530136,51627806)Young Scientific Innovation Team of Science and Technology of Sichuan Province of China(Grant No.2017TD0017)Opening Project of Key Laboratory of Testing Technology for Manufacturing Process of China(Grant Nos.2016-01,Southwest University of Science and Technology)
文摘The mechanical and wear properties of CFRP laminate were investigated using a method of cycling low velocity impact, to study the trend and mechanism of impact resistance of the CFRP laminate under repeated impact during its service process. The interface responses of CFRP laminate under di erent impact kinetic energy during the cycling impact process were studied were studied experimentally, such as impact contact duration, deformation and energy absorption. The worn surface morphologies were observed through optical microscopy and a 3?D surface profiler and the cross?sectional morphologies were observed through SEM to investigate the mechanism of impact material dam?age. Based on a single?degree?of?freedom damping vibration model, the normal contact sti ness and contact damp?ing of the material in di erent wear stages were calculated. It shows the failure process of CFRP laminate damaged by accumulated absorption energy under the cycling impact of di erent initial kinetic energy. The results indicate that the sti ness and damping coe cients will change at di erent impact velocities or cycle numbers. The damage mechanism of CFRP laminates under cycling low kinetic energy is delamination. After repeated experiments, it was found that there was a threshold value for the accumulated absorption energy before the failure of the CFRP laminate.
基金National Natural Science Foundation of China (40074024 and 40304002).
文摘In this paper, observation data in 25 GPS reference stations of China have been analyzed by calculating GPS position coordinate time-series with GIPSY. Result shows there is an obvious trend variation in such time-series. The trend variations of time series along the longitude and latitude coordinate reflect the motion of each position in the global-plate, in which the trend variation in the vertical direction reveals some large-scale construction information or reflects the local movement around the positions. The analysis also shows that such time-series have a variation cycle of nearly 1.02 a, but the reason still remains to be further studied. At the end of this paper, response of the time-series to MS=8.1 Kunlunshan earthquake was analyzed, and the seismogenic process of MS=8.1 Kunlunshan earthquake, according to the time proceeding and the feature of anomaly, was divided into 3 phases-changes in blocks with forces, strain accumulation, quick accumulation and slow release of energy. At the initial stage of seismogenic process of MS=8.1 earthquake and at the imminent earthquake, coseismic process as well as during the post earthquake recovery, anomaly in vertical direction is always in a majority. The anomalous movement in vertical direction at the initial stage resulted in a blocking between faults, while at the middle stage of seismogenic process, the differential movement between blocks are in a majority, which is the major reason causing energy accumulating at the blocking stage of faults.
基金funded by the key projects off undamental Research projects in the Institute of Earthquake Science,CEA(Grant No:2013IES0101&2014IES0101)
文摘In this paper,the main purpose is to analyze and research the characteristics of the geoelectric field observed data with a long time span and large amplitude abnormal change,at the Lhasa geomagnetic station( hereafter referred to as "Lhasa station "),before and after the Nepal M_S8. 1 strong earthquake,which occurred on April 25,2015. Based on the observation conditions,the observation system,and the observed data of Lhasa station preliminary discussed,the main characteristics of the abnormal change and evolution process are analyzed and studied,using the following two methods; the "synthesis energy accumulation"and the "power as MSA spectrum"analysis,from the two aspects of the"Time Domain"and"Frequency Domain. "The results show that the abnormal change of the geo-electric field observation of Lhasa station experienced a development stage following the process of "trend change- disturbance change- earthquake period-recovery period",and an evolution process of "low frequency change- high frequency change- smooth change- high frequency change ",before and after the Nepal M_S8. 1strong earthquake. Comprehensive analysis shows that the variation characteristics and evolution process of the geo-electric field at Lhasa station are basically consistent with the results of the relevant mechanism and phenomenon research. So far,this is valuable information with certain objectivity,which is typical and representative to reflect the whole process of the gestation, occurrence and complete development of such strongearthquakes.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2014CB953900)National Natural Science Foundation of China(41375081)+1 种基金LASW State Key Laboratory Special Fund(2013LASW-A05)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406018)
文摘Early theoretical analyses indicated that the tropics and extratropics are relatively independent due to the existence of critical latitudes.However,considerable observational evidence has shown that a clear dynamical link exists between the tropics and midlatitudes.To better understand such atmospheric teleconnection,several theories of wave energy propagation are reviewed in this paper:(1) great circle theory,which reveals the characteristics of Rossby waves propagating in the spherical atmosphere;(2) westerly duct theory,which suggests a "corridor" through which the midlatitude disturbances in one hemisphere can propagate into the other hemisphere;(3) energy accumulation-wave emanation theory,which proposes processes through which tropical disturbances can affect the atmospheric motion in higher latitudes;(4) equatorial wave expansion theory,which further explains the physical mechanisms involved in the interaction between the tropics and extratropics;and(5) meridional basic flow theory,which argues that stationary waves can propagate across the tropical easterlies under certain conditions.In addition,the progress made in diagnosing wave-flow interaction,particularly for Rossby waves,inertial-gravity waves,and Kelvin waves,is also reviewed.The meridional propagation of atmospheric energy exhibits significant annual and interannual variations,closely related to ENSO and variation in the westerly jets and tropical upper-tropospheric troughs,amongst others.
基金Supported by the National Natural Science Foundation of China(42075068)National Key Research and Development Program of China(2018YFC1507905)+1 种基金National Natural Science Foundation of China(41875170,41975176,41505118,and 71701105)Major Program of the National Social Science Fund of China(17ZDA092)。
文摘Tropical cyclone precipitation(TCP)accounts for 10%-40%of the boreal summer precipitation that occurs over Southeast China(SEC),causing flood disasters and serious damage.On the decadal scale,TCP increases significantly in SEC while TC frequency decreases in the western North Pacific(WNP)during 1980-2019.Therefore,variations in TCP and the corresponding physical mechanism are investigated in this study.First,an empirical statistical method is introduced to quantify the TCP amount based on accumulated cyclone energy(ACE)and TC frequency with the TCP anomaly decomposed into three items(rainfall frequency,rainfall intensity,and nonlinear item).ACE,as the integration of TC intensity and frequency,is a more effective index than TC frequency for depicting the characteristics of TCP because the contribution of rainfall frequency represented by ACE is higher than that of TC frequency.Then,the physical mechanism affecting the WNP TC activities and TCP in SEC are inspected.Positive sea surface temperature anomaly(SSTA)over the tropical eastern Pacific(TEP)in winter can trigger variations of air-sea interaction over the tropical Pacific,including low-level divergent winds,mid-tropospheric descent flows,high-level convergent winds coupled with negative anomalies of vorticity and humidity over the tropical western Pacific(TWP)in the next summer.These dynamic conditions provide unfavorable environments for TC activities in the WNP and constrain TCP in SEC.Furthermore,more significantly negative SSTA events in the TEP facilitate enhanced ACE along with positive relative vorticity,relative humidity,and upwelling vertical winds anomalies over the coast of SEC after 1998,which is a reasonable explanation for the increasing TCP in SEC.