期刊文献+
共找到425篇文章
< 1 2 22 >
每页显示 20 50 100
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
1
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
2
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
3
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework Core-shell structure PHOTOCATALYSIS energy conversion Environmental remediation
下载PDF
Cascade utilization of full spectrum solar energy for achieving simultaneous hydrogen production and all-day thermoelectric conversion
4
作者 Tuo Zhang Liang Dong +8 位作者 Baoyuan Wang Jingkuo Qu Xiaoyuan Ye Wengao Zeng Ze Gao Bin Zhu Ziying Zhang Xiangjiu Guan Liejin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期318-327,共10页
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina... Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability. 展开更多
关键词 Hybrid solar energy conversion system Photocatalytic overall seawatersplitting Thermoelectric power generation Phase change materials All-day operation
下载PDF
Electronic structure engineering of transition metal dichalcogenides for boosting hydrogen energy conversion electrocatalysts
5
作者 Bing Hao Jingjing Guo +1 位作者 Peizhi Liu Junjie Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期13-28,共16页
Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels.This promising process,however,is limited by its sluggish reaction kinetics and... Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels.This promising process,however,is limited by its sluggish reaction kinetics and high-cost catalysts.The two-dimensional(2D)transition metal dichalcogenides(TMDCs)have presented great potential as electrocatalytic materials due to their tunable bandgaps,abundant defective active sites,and good chemical stability.Consequently,phase engineering,defect engineering and interface engineering have been adopted to manipulate the electronic structure of TMDCs for boosting their exceptional catalytic performance.Particularly,it is essential to clarify the local structure of catalytically active sites of TMDCs and their structural evolution in catalytic reactions using atomic resolution electron microscopy and the booming in situ technologies,which is beneficial for exploring the underlying reaction mechanism.In this review,the growth regulation,characterization,particularly atomic configurations of active sites in TMDCs are summarized.The significant role of electron microscopy in the understanding of the growth mechanism,the controlled synthesis and functional optimization of 2D TMDCs are discussed.This review will shed light on the design and synthesis of novel electrocatalysts with high performance,as well as prompt the application of advanced electron microscopy in the research of materials science. 展开更多
关键词 TMDCs STEM hydrogen energy conversion active site identification
下载PDF
Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications
6
作者 Jung Hwan Park Srinivas Pattipaka +10 位作者 Geon-Tae Hwang Minok Park Yu Mi Woo Young Bin Kim Han Eol Lee Chang Kyu Jeong Tiandong Zhang Yuho Min Kwi-Il Park Keon Jae Lee Jungho Ryu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期468-514,共47页
This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters... This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations. 展开更多
关键词 LIGHT Light-material interaction NANOMATERIALS energy conversion and storage devices
下载PDF
Energy conversion due to non-ideal electric field in separatrix region of magnetotail reconnection
7
作者 YiNan Liu Keizo Fujimoto +1 位作者 JianQiang Wang XiaoChuan Duan 《Earth and Planetary Physics》 EI CAS CSCD 2024年第5期787-796,共10页
A recent satellite observation has revealed the presence of energy conversion in the separatrix region(SR)of magnetotail reconnection,driven by perpendicular components.We investigated this phenomenon by means of part... A recent satellite observation has revealed the presence of energy conversion in the separatrix region(SR)of magnetotail reconnection,driven by perpendicular components.We investigated this phenomenon by means of particle-in-cell simulations in two-dimensional(2D)and three-dimensional(3D)systems.Our result indicates that in the 2D simulation,energy conversion in the SR is dominated by parallel components,with the main influencing factor being the parallel electric field,which is not consistent with the observation.However,a case that is similar to the observation is found in the 3D simulation,suggesting that the observation result may be attributed to the 3D characteristics.Our findings provide a potential explanation for the satellite observation. 展开更多
关键词 magnetic reconnection energy conversion PIC simulation separatrix region
下载PDF
IoT Enabled Microgrid Framework Using a Novel Dispersal Diffusion Artificial Neural Network Controller for PV Systems and Wind Energy to Minimize Electrical Faults
8
作者 V V Vijetha Inti V S Vakula 《China Communications》 SCIE CSCD 2024年第12期217-230,共14页
A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DF... A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault. 展开更多
关键词 dispersal diffusion search and artificial neural network maximum power point tracking(MPPT) photovoltaic(PV)array wind energy conversion system(WECS)
下载PDF
Application of Power Electronics Converters in Renewable Energy
9
作者 Tao Cheng 《Journal of Electronic Research and Application》 2024年第4期101-107,共7页
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters... Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development. 展开更多
关键词 Power electronics converters Renewable energy Photovoltaic power generation Wind power generation energy storage systems High-efficiency energy conversion Multilevel conversion New materials New devices
下载PDF
The Method of Thermoelectric Energy Generations Based on the Axial and Radial Flux Electromagnetic Inductions*
10
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《World Journal of Engineering and Technology》 2024年第3期715-730,共16页
The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engin... The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engines for the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines (a drinking bird, a low temperature Stirling engine), resulting in thermoelectric energy generation different from conventional heat engines. The mechanism of thermoelectric energy conversion can be categorized as the axial flux generator (AFG) and the radial flux generator (RFG). The axial flux generator is helpful for low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators, such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines, and the device contributes to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies. 展开更多
关键词 Axial Flux and Radial Flux Generators Thermomechanical Dynamics (TMD) Thermoelectric energy Conversions
下载PDF
Energy conversion of rocks in process of unloading confining pressure under different unloading paths 被引量:13
11
作者 赵国彦 戴兵 +1 位作者 董陇军 杨晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1626-1632,共7页
Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy... Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy for axial compression, the dissipating strain energy for plastic deformation and cracks propagation, the expending strain energy for circumferential deformation, and the storing and releasing elastic strain energy were considered. Unloading paths included the condition of fixing axial pressure and unloading axial pressure, increasing axial pressure and unloading confining pressure, as well as unloading axial pressure and confining pressure simultaneously. Results show that expending strain energy for circumferential deformation has mainly evolved from absorbing strain energy for axial compression in three unloading paths during unloading processes. Dissipating strain energy is significantly increased only near the peak point. The effect of initial confining pressure on strain energy is significantly higher than that of unloading path. The strain energy is linearly increased with increasing initial confining pressure. The unloading path and initial confining pressure also have great influence on the energy dissipation. The conversion rate of strain energy in three paths is increased with increasing initial confining pressure, and the effect of initial confining pressure on conversion rate of strain energy is related with the unloading paths. 展开更多
关键词 unloading paths axial pressure confining pressure strain energy energy conversion
下载PDF
Nanostructured energy materials for electrochemical energy conversion and storage: A review 被引量:37
12
作者 Xueqiang Zhang Xinbing Cheng Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期967-984,共18页
Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient ... Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 energy materials Lithium ion batteries Lithium sulfur batteries Lithium oxygen batteries Lithium metal SUPERCAPACITORS Oxygen reduction reaction Oxygen evolution reaction ELECTROCATALYSIS Nanostructures energy conversion and storage
下载PDF
Solar energy conversion on g-C3N4 photocatalyst:Light harvesting,charge separation,and surface kinetics 被引量:11
13
作者 Mu Xiao Bin Luo +1 位作者 Songcan Wang Lianzhou Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1111-1123,共13页
Photocatalysis. which utilizes solar energy to trigger chemical reactions, is one of the most desirable solar-energy-conversion approaches. Graphitic carbon nitride (g-C3N4). as an attractive metal-free photocatalys... Photocatalysis. which utilizes solar energy to trigger chemical reactions, is one of the most desirable solar-energy-conversion approaches. Graphitic carbon nitride (g-C3N4). as an attractive metal-free photocatalyst, has drawn worldwide research interest in the area of solar energy conversion due to its easy synthesis, earth-abundant nature, physicochemical stability and visible-light-responsive properties. Over the past ten years, g-C3N4 based photocatalysts have experienced intensive exploration, and great progress has been achieved. However, the solar conversion efficiency is still far from industrial applications due to the wide bandgap, severe charge recombination, and lack of surface active sites. Many strategies have been proposed to enhance the light absorption, reduce the recombination of charge carriers and accelerate the surface kinetics. This work makes a crucial review about the main contributions of various strategies to the light harvesting, charge separation and surface kinetics of g-C3N4 photocatalyst. Furthermore, the evaluation measurements for the enhanced light harvesting, reduced charge recombination and accelerated surface kinetics will be discussed. In addition, this review proposes future trends to enhance the photocatalytic performance of g-C3N4 photocatalyst for the solar energy conversion. 展开更多
关键词 PHOTOCATALYSIS g-C3N4 Light harvesting Charge separation Surface kinetics Solar energy conversion
下载PDF
A perspective on carbon materials for future energy application 被引量:17
14
作者 Dang Sheng Su Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期151-173,共23页
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou... Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions. 展开更多
关键词 NANOCARBON CNT GRAPHENE hybrid carbon materials sustainable energy energy storage and conversion solar cells Li-batteries supercapac-itors
下载PDF
Recent progress and perspectives on silicon anode:Synthesis and prelithiation for LIBs energy storage 被引量:17
15
作者 Yuanxing Zhang Borong Wu +3 位作者 Ge Mu Chengwei Ma Daobin Mu Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期615-650,I0016,共37页
The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these d... The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these devices,alkali metal ion batteries,such as lithium-ion batteries(LIBs) had attracted increasing research attention due to its several advantages including,environmental friendliness,high power density,long cycle life and excellent reversibility.It had been widely used in consumer electronics,electric vehicles,and large power grids et ac.Silicon-based(silicon and their oxides,carbides) anodes had been widely studied.Its several advantages including low cost,high theoretical capacity,natural abundance,and environmental friendliness,which shows great potential as anodes of LIBs.In this review,we summarized the recently progress in the synthetic method of silicon matrix composites.The empirical method for prelithiation of silicon-based materials were also provided.Further,we also reviewed some novel characterization methods.Finally,the new design,preparation methods and properties of these nano materials were reviewed and compared.We hoped that this review can provide a general overview of recent progress and we briefly highlighted the current challenges and prospects,and will clarify the future trend of silicon anode LIBs research. 展开更多
关键词 Si anodes Lithium-ion batteries Prelithiation CHARACTERIZATION energy storage and conversion
下载PDF
Laser Synthesis and Microfabrication of Micro/ Nanostructured Materials Toward Energy Conversion and Storage 被引量:12
16
作者 Lili Zhao Zhen Liu +6 位作者 Duo Chen Fan Liu Zhiyuan Yang Xiao Li Haohai Yu Hong Liu Weijia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期107-154,共48页
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device... Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development. 展开更多
关键词 Laser synthesis Laser microfabrication Micro/nanostructured materials energy conversion and storage
下载PDF
Energy conversion and deposition behaviour in gravitational collapse of granular columns 被引量:7
17
作者 HUANG Bo-lin WANG Jian +2 位作者 ZHANG Quan LUO Chao-lin CHEN Xiao-ting 《Journal of Mountain Science》 SCIE CSCD 2020年第1期216-229,共14页
The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column c... The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results. 展开更多
关键词 Granular columns Rock collapse Collapse experiments energy conversion Deposit sequence Deposit prediction
下载PDF
Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship 被引量:7
18
作者 Jiangtian Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期86-117,共32页
The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relat... The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relations between the reaction intermediates,however,impose a large intrinsic overpotential and sluggish reaction kinetics on OER catalysts.Developing advanced electrocatalysts with high activity and stability based on non-noble metal materials is still a grand challenge.Central to the rational design of novel and high-efficiency catalysts is the development and understanding of quantitative structure–activity relationships,which correlate the catalytic activities with structural and electronic descriptors.This paper comprehensively reviews the benchmark descriptors for OER electrolysis,aiming to give an in-depth understanding on the origins of the electrocatalytic activity of the OER and further contribute to building the theory of electrocatalysis.Meanwhile,the cutting-edge research frontiers for proposing new OER paradigms and crucial strategies to circumvent the scaling relationship are also summarized.Challenges,opportunities and perspectives are discussed,intending to shed some light on the rational design concepts and advance the development of more efficient catalysts for enhancing OER performance. 展开更多
关键词 Oxygen evolution energy conversion and storage Scaling relationship Catalytic descriptors Lattice oxygen oxidation
下载PDF
In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy 被引量:6
19
作者 Heng‐Quan Chen Lie Zou +4 位作者 Di‐Ye Wei Ling‐Ling Zheng Yuan‐Fei Wu Hua Zhang Jian‐Feng Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第1期33-46,共14页
Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmen... Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed. 展开更多
关键词 Raman spectroscopy X-ray absorption spectroscopy In situ characterization ELECTROCATALYSIS energy conversion and storage
下载PDF
Recent advances in one-dimensional nanostructures for energy electrocatalysis 被引量:5
20
作者 Ping Li Wei Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第1期4-22,共19页
Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highligh... Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highlights the application of one‐dimensional(1D)metal electrocatalysts in energy conversion,focusing on two important reaction systems-direct methanol fuel cells and water splitting.In this review,we first give a broad introduction of electrochemical energy conversion.In the second section,we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems,including the oxygen reduction reaction,methanol oxidation reaction,hydrogen evolution reaction,and oxygen evolution reaction.Finally,based on the current studies on 1D nanostructures for energy electrocatalysis,we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above. 展开更多
关键词 One‐dimensional nanostructure Fuel cell Water splitting ELECTROCATALYSIS energy conversion
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部