期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
A Novel Hybrid MPPT for Wind Energy Conversion Systems Operating under Low Variations in Wind Speed 被引量:1
1
作者 Paul Abena Malobe Philippe Djondine +1 位作者 Pascal Ntsama Eloundou Hervé Abena Ndongo 《Energy and Power Engineering》 2020年第12期716-728,共13页
This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combin... This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method. 展开更多
关键词 MPPT Sliding Mode-Fuzzy Logic Controller Wind energy conversion system CHATTERING
下载PDF
OUTPUT MAXIMIZATION CONTROL FOR VSCF WIND ENERGY CONVERSION SYSTEM USING EXTREMUM CONTROL STRATEGY
2
作者 付大丰 马运东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期185-192,共8页
The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablesp... The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablespeed wind turbine(VSWT)driving a squirrel-cage induction generator(SCIG)connected to a grid.A new maximum power point tracking(MPPT)approach is proposed based on the extremum seeking control principles under the assumption that the wind turbine model and its parameters are poorly known.The aim is to drive the average position of the operation point close to optimality.Here the wind turbulence is used as search disturbance instead of inducing new sinusoidal search signals.The discrete Fourier transform(DFT)process of some available measures estimates the distance of operation point to optimality.The effectiveness of the proposed MPPT approach is validated under different operation conditions by numerical simulations in MATLAB/SIMULINK.The simulation results prove that the new approach can effectively suppress the vibration of system and enhance the dynamic performance of system. 展开更多
关键词 wind energy conversion systems maximum power point tracking extremum control strategy discrete Fourier transform
下载PDF
Direct driven wind energy conversion system based on hybrid excitation synchronous machine
3
作者 叶斌英 阮毅 +2 位作者 杨勇 赵海花 汤燕燕 《Journal of Shanghai University(English Edition)》 CAS 2011年第6期562-567,共6页
A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled... A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system. 展开更多
关键词 maximum power point tracking(MPPT) wind energy conversion system direct-driven hybrid excitation
下载PDF
Event-triggered mechanism based robust fault-tolerant control for networked wind energy conversion system
4
作者 Zhihong Huo Chang Xu 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期55-65,共11页
In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The non... In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective. 展开更多
关键词 Event-triggered mechanism(ETM) Wind energy conversion system(WECS) Fault-tolerant control(FTC) Takagi-sugeno(T-S)fuzzy model
下载PDF
Hybrid Control Strategy for Matrix Converter Fed Wind Energy Conversion System
5
作者 Jamna Ayadathil Jamuna Venkatesan 《Circuits and Systems》 2016年第10期3038-3053,共16页
In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence i... In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results. 展开更多
关键词 Hybrid Control Strategy Wind energy conversion system Three Phase Matrix Converter Space Vector Modulation Over Current/Clamp Circuit Protection FPGA Controller
下载PDF
The research on direct-drive wave energy conversion system and performance optimization
6
作者 CHEN Zhongxian YU Haitao HU Minqiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第9期178-183,共6页
A direct-drive wave energy conversion system based on a three-phase permanent magnet tubular linear generator (PMTLG) and a heaving buoy is proposed to convert wave energy into electrical energy. Sufficient experime... A direct-drive wave energy conversion system based on a three-phase permanent magnet tubular linear generator (PMTLG) and a heaving buoy is proposed to convert wave energy into electrical energy. Sufficient experimental methods are adopted to compare the computer simulations, the validity of which is verified by the experiment results from a wave tank laboratory. In the experiment, the motion curves of heaving buoy are with small fluctuations, mainly caused by the PMTLG's detent force. For the reduction of these small fluctuations and a maximum operational efficiency of the direct-drive wave energy conversion system, the PMTLG's detent force minimization technique and the heaving buoy optimization will be discussed. It is discovered that the operational efficiency of the direct-drive wave energy conversion system increases dramatically after optimization. The experiment and optimization results will provide useful reference for the future research on ocean wave energy conversion system. 展开更多
关键词 wave energy conversion linear generator detent force minimization technique heaving buoy optimization
下载PDF
Cascade utilization of full spectrum solar energy for achieving simultaneous hydrogen production and all-day thermoelectric conversion
7
作者 Tuo Zhang Liang Dong +8 位作者 Baoyuan Wang Jingkuo Qu Xiaoyuan Ye Wengao Zeng Ze Gao Bin Zhu Ziying Zhang Xiangjiu Guan Liejin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期318-327,共10页
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina... Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability. 展开更多
关键词 Hybrid solar energy conversion system Photocatalytic overall seawatersplitting Thermoelectric power generation Phase change materials All-day operation
下载PDF
Three-phase AC-DC Converter for Direct-drive PMSG-based Wind Energy Conversion System
8
作者 Kumar Abhishek Singh Ayushi Chaudhary Kalpana Chaudhary 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期589-598,共10页
In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power ... In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power extraction from the permanent magnet synchronous generator(PMSG).The bridgeless topology enables the elimination of the front-end diode bridge rectifier(DBR).Moreover,the converter has fewer components,simple control,and high efficiency,making it suitable for a small-scale WECS.A squirrel cage induction motor(SCIM)is used to emulate a MOD-2 wind turbine to implement the PMSG-based WECS.A direct-drive eight-pole PMSG is used in this study;thus,a low-input-voltage system is designed.The converter is designed to operate in the discontinuous inductor current mode(DICM)for inherent power factor correction(PFC)and the maximum power point tracking(MPPT)is achieved through the tip-speed ratio(TSR)following.The performance of the developed system is analyzed through simulation,and a 500 W hardware prototype is developed and tested in different wind speed conditions. 展开更多
关键词 Permanent magnet synchronous generator(PMSG) three-phase AC-DC converter wind energy conversion system(WECS) wind turbine emulator
原文传递
A Novel Modified Fuzzy-predictive Control of Permanent Magnet Synchronous Generator Based Wind Energy Conversion System
9
作者 Ehsan Akbari Milad Samady Shadlu 《Chinese Journal of Electrical Engineering》 EI CSCD 2023年第4期107-121,共15页
A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high per... A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted. 展开更多
关键词 Maximum power point tracking(MPPT) wind energy conversion system(WECS) permanent magnet synchronous generator(PMSG) fuzzy logic control(FLC) model predictive control(MPC)
原文传递
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
10
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
11
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework Core-shell structure PHOTOCATALYSIS energy conversion Environmental remediation
下载PDF
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
12
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C3N4)have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high lumines... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C3N4)have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
A novel cascaded energy conversion system inducing efficient and precise cancer therapy 被引量:2
13
作者 Yong Kang Na Kong +7 位作者 Meitong Ou Ying Wang Qicai Xiao Lin Mei Bing Liu Liqun Chen Xiaobin Zeng Xiaoyuan Ji 《Bioactive Materials》 SCIE CSCD 2023年第2期663-676,共14页
Cancer therapies based on energy conversion,such as photothermal therapy(PTT,light-to-thermal energy conversion)and photodynamic therapy(PDT,light-to-chemical energy conversion)have attracted extensive attention in pr... Cancer therapies based on energy conversion,such as photothermal therapy(PTT,light-to-thermal energy conversion)and photodynamic therapy(PDT,light-to-chemical energy conversion)have attracted extensive attention in preclinical research.However,the PTT-related hyperthermia damage to surrounding tissues and shallow penetration of PDT-applied light prevent further advanced clinical practices.Here,we developed a thermoelectric therapy(TET)based on thermoelectric materials constructed p-n heterojunction(SrTiO_(3)/Cu_(2)Se nanoplates)on the principle of light-thermal-electricity-chemical energy conversion.Upon irradiation and natural cooling-induced the temperature gradient(35-45℃),a self-build-in electric field was constructed and thereby facilitated charges separation in bulk SrTiO_(3)and Cu_(2)Se.Importantly,the contact between SrTiO_(3)(n type)and Cu_(2)Se(p type)constructed another interfacial electric field,further guiding the separated charges to re-locate onto the surfaces of SrTiO_(3)and Cu_(2)Se.The formation of two electric fields minimized probability of charges recombination.Of note,high-performance superoxide radicals and hydroxyl radicals’generation from O_(2)and H_(2)O under catalyzation by separated electrons and holes,led to intracellular ROS burst and cancer cells apoptosis without apparent damage to surrounding tissues.Construction of bulk and interfacial electric fields in heterojunction for improving charges separation and transfer is also expected to provide a robust strategy for diverse applications. 展开更多
关键词 Thermoelectric therapy Photothermal therapy Reactive oxygen species p-n heterojunction energy conversion
原文传递
Review of enhancement for ocean thermal energy conversion system
14
作者 Safaa Malik Abbas HendDakhelSkhaal Alhassany +1 位作者 David Vera Francisco Jurado 《Journal of Ocean Engineering and Science》 SCIE 2023年第5期533-545,共13页
Ocean thermal energy conversion(OTEC)is a renewable energy source that uses differences in ocean water temperature between warm surface and cold depth to generate electricity.It is an essential link in the carbon neut... Ocean thermal energy conversion(OTEC)is a renewable energy source that uses differences in ocean water temperature between warm surface and cold depth to generate electricity.It is an essential link in the carbon neutrality chain and one of the rising sectors of the ocean energy.This paper provides an overview of studies on closed thermodynamic cycles and the numerous difficulties that OTEC technology faces.A description of the thermodynamic cycles incorporating mixed or pure working fluids,as well as the implications of different working fluids on cycle efficiency were also studied.Changes in condensing and evaporating temperatures induced by variations in heat resources affect the efficiency of cycles with pure working fluids.Several strategies,such as intermediate extraction regeneration and heat recovery of ammonia-depleted solution can increase the thermal efficiency with mixed working fluids.In addition,the impact of the ejector on the cycle’s performance is examined.Finally,the efficiency-improving strate-gies are described and summarized.Thermodynamic efficiency can increase using suitable working fluids and taking steps to maximize the rate of ocean thermal energy.To establish which approach is the most effective,different methods have been evaluated and compared under identical operating conditions. 展开更多
关键词 Ocean thermal energy conversion Organic rankine cycle AMMONIA-WATER Liquid-vapor ejector Vapor-vapor ejector
原文传递
Fault ride-through of renewable energy conversion systems during voltage recovery 被引量:7
15
作者 Ruiqi LI Hua GENG Geng YANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2016年第1期28-39,共12页
Asymmetrical voltage swells during recovery of a short-circuit fault lead to fluctuations in the dc-link voltage of a renewable energy conversion system(RECS),and may induce reversed power flow and even trip the RECS.... Asymmetrical voltage swells during recovery of a short-circuit fault lead to fluctuations in the dc-link voltage of a renewable energy conversion system(RECS),and may induce reversed power flow and even trip the RECS. This paper studies characteristics of both typical causes resulting in the practical asymmetrical voltage swell and the voltage at the point of common coupling(PCC)during the fault recovery. As analyzed, the fault recovery process can be divided into two continuous periods in which different control strategies have to be applied. Also protective measures are necessary in the transient period of the process. Additionally, the asymmetrical high-voltage ride-through capability and the controllability criteria of the RECS are analyzed based on eliminating the fluctuations. Furthermore, an asymmetrical control scheme is proposed to maintain the controllability of the RECS and ride through the entire recovery process. As verified by the simulation, the scheme can promise the RECS to deal with the practical fault recovery period and mitigate the dc-link voltage fluctuations, which improves the reliability of the RECS and the power system. 展开更多
关键词 INVERTER Renewable energy conversion system Asymmetrical grid voltage High-voltage ride-through(HVRT) Limit analysis
原文传递
Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation 被引量:4
16
作者 Yajvender Pal VERMA Ashwani KUMAR 《Frontiers in Energy》 CSCD 2012年第2期184-192,共9页
Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivale... Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control. 展开更多
关键词 doubly fed induction generator (DFIG) load frequency control inertial control wind energy conversion system (WECS)
原文传递
Industrial IoT Based Condition Monitoring for Wind Energy Conversion System 被引量:1
17
作者 Md Liton Hossain Ahmed Abu-Siada +2 位作者 S.M.Muyeen Md Mubashwar Hasan Momtazur Rahman 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第3期654-664,共11页
Wind energy has been identified as the second dominating source in the world renewable energy generation after hydropower.Conversion and distribution of wind energy has brought technology revolution by developing the ... Wind energy has been identified as the second dominating source in the world renewable energy generation after hydropower.Conversion and distribution of wind energy has brought technology revolution by developing the advanced wind energy conversion system(WECS)including multilevel inverters(MLIs).The conventional rectifier produces ripples in their output waveforms while the MLI suffers from voltage balancing issues across the DC-link capacitor.This paper proposes a simplified proportional integral(PI)-based space vector pulse width modulation(SVPWM)to minimize the output waveform ripples,resolve the voltage balancing issue and produce better-quality output waveforms.WECS experiences various types of faults particularly in the DC-link capacitor and switching devices of the power converter.These faults,if not detected and rectified at an early stage,may lead to catastrophic failures to the WECS and continuity of the power supply.This paper proposes a new algorithm embedded in the proposed PI-based SVPWM controller to identify the fault location in the power converter in real time.Since most wind power plants are located in remote areas or offshore,WECS condition monitoring needs to be developed over the internet of things(IoT)to ensure system reliability.In this paper,an industrial IoT algorithm with an associated hardware prototype is proposed to monitor the condition of WECS in the real-time environment. 展开更多
关键词 Asset management condition monitoring fault diagnosis industrial internet of things(IoT) wind energy conversion system
原文传递
Ferroresonance Overvoltage Mitigation Using STATCOM for Grid-connected Wind Energy Conversion Systems 被引量:1
18
作者 Mohamed I.Mosaad Nehmdoh A.Sabiha 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期407-415,共9页
We present the ferroresonance overvoltage mitigation concerning the power systems of the grid-connectcd wind energy conversion systems(WECSs).WECS is considered based on a doubly-fed induction generator(DFIG).Ferrores... We present the ferroresonance overvoltage mitigation concerning the power systems of the grid-connectcd wind energy conversion systems(WECSs).WECS is considered based on a doubly-fed induction generator(DFIG).Ferroresonance overvoltage associated with a single-pole outage of the line breaker is mitigated by fast regulating the reactive power using the static compensator(STATCOM).STATCOM controller is introduced,in which t>\o incorporated proportional-integral(PI)controllers are optimally tuned using a modified flow-er pollination algorithm(MFPA)as an optimization technique.To show the capability of the proposed STATCOM controller in mitigating the ferroresonance overvoltage,two test cases are introduced,which are based on the interconnection status of the power transformer used with the grid-connected DFIGs.The results show that the ferroresonance disturbance can occur for the power transformers installed in the wind farms although the transformer terminals are interconnected,and neither side of the transformer is isolated.Furthermore,as a mitigation method of ferroresonance overvoltage,the proposed STATCOM controller succeeds in improving the system voltage profile and speed profile of the wind turbine as well as protecting the system components against the ferroresonance overvoltage. 展开更多
关键词 Ferroresonance overvoltage doubly-fed induction generator(DFIG) static compensator(STATCOM) wind energy conversion system(WECS).
原文传递
Oxidative Molecular Layer Deposition Tailoring Eco-Mimetic Nanoarchitecture to Manipulate Electromagnetic Attenuation and Self-Powered Energy Conversion 被引量:3
19
作者 Jin-Cheng Shu Yan-Lan Zhang +1 位作者 Yong Qin Mao-Sheng Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期224-237,共14页
Advanced electromagnetic devices,as the pillars of the intelligent age,are setting off a grand transformation,redefining the structure of society to present pluralism and diversity.However,the bombardment of electroma... Advanced electromagnetic devices,as the pillars of the intelligent age,are setting off a grand transformation,redefining the structure of society to present pluralism and diversity.However,the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of"Big Data".Herein,drawing wisdom and inspiration from nature,an eco-mimetic nanoarchitecture is constructed for the first time,highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response.Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition(oMLD),providing a new cognition to frequency-selective microwave absorption.The optimal reflection loss reaches≈−58 dB,and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles.Meanwhile,a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption,covering almost the entire K and Ka bands.More importantly,an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture,which can convert electromagnetic radiation into electric energy for recycling.This work offers a new insight into electromagnetic protection and waste energy recycling,presenting a broad application prospect in radar stealth,information communication,aerospace engineering,etc. 展开更多
关键词 Oxidative molecular layer deposition Eco-mimetic nanoarchitecture Microwave absorption Electromagnetic attenuation Self-powered energy conversion device
下载PDF
Electrospun Semiconductor-Based Nano-Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation:Opportunities and Challenges 被引量:2
20
作者 Na Lu Mingyi Zhang +3 位作者 Xuedong Jing Peng Zhang Yongan Zhu Zhenyi Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期212-238,共27页
Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever-growing challenges of both energy shortage and environmental pollution.Design and synthesis of nano-heterostr... Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever-growing challenges of both energy shortage and environmental pollution.Design and synthesis of nano-heterostructure photocatalysts with controllable components and morphologies are the key factors for achieving highly efficient photocatalytic processes.Onedimensional(1D)semiconductor nanofibers produced by electrospinning possess a large ratio of length to diameter,high ratio of surface to volume,small grain sizes,and high porosity,which are ideally suited for photocatalytic reactions from the viewpoint of structure advantage.After the secondary treatment of these nanofibers through the solvothermal,gas reduction,in situ doping,or assembly methods,the multi-component nanofibers with hierarchical nano-heterostructures can be obtained to further enhance their light absorption and charge carrier separation during the photocatalytic processes.In recent years,the electrospun semiconductorbased nano-heterostructures have become a“hot topic”in the fields of photocatalytic energy conversion and environmental remediation.This review article summarizes the recent progress in electrospinning synthesis of various kinds of high-performance semiconductor-based nano-heterostructure photocatalysts for H2 production,CO_(2) reduction,and decomposition of pollutants.The future perspectives of these materials are also discussed. 展开更多
关键词 electrospun nanofibers energy conversion environmental remediation PHOTOCATALYSIS semiconductor heterojunction
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部