This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitutio...This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.展开更多
More than 10000 different types of ship ply the waters of Bangladesh all year round,but the performance of these ships in terms of CO2 emission is not known and regulations related to energy efficiency of inland water...More than 10000 different types of ship ply the waters of Bangladesh all year round,but the performance of these ships in terms of CO2 emission is not known and regulations related to energy efficiency of inland waterway ships remain nonexistent.This paper attempts to assess the present situation of inland class vessels in terms of Energy Efficiency Design Index(EEDI).With the use of a developed database of inland vessels in Bangladesh,EEDI reference lines for different types of inland vessels in Bangladesh were established and then compared with those of other countries.The present EEDI of existing inland vessels was investigated.Results indicate that most of the existing vessels do not meet the current EEDI baseline.Hence,new guidelines are necessary to achieve EEDI compliance in the near future.Some recommendations were proposed for improving CO2 emissions,with the socioeconomic and technical factors in Bangladesh taken into consideration.展开更多
The paper use advantage of local natural resources, greening and sufficient water resources, combine natural ecological environment design with rural architecture, and fully consider local economic base and material t...The paper use advantage of local natural resources, greening and sufficient water resources, combine natural ecological environment design with rural architecture, and fully consider local economic base and material technical conditions, and takes site selection and planning, architectural design technology as the two core aspects to study rural residential energy conservation, improving thermal environment of indoor residential that use of nature building energy saving technique, efforts to reduce the use of mechanical equipment system, thereby reducing the rural residential building energy consumption.展开更多
The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
Existing theories of thermal comfort are largely blind to the way heat is delivered to spaces.Field studies,however,show that people create and enjoy thermal conditions that lie outside conventional definitions of com...Existing theories of thermal comfort are largely blind to the way heat is delivered to spaces.Field studies,however,show that people create and enjoy thermal conditions that lie outside conventional definitions of comfort-the thermal experience itself is valued-some of which are tied to particular ways of delivering heat.The concept“exergy”can be used to describe the quality of heat energy and its ability to provide warmth.A shift from fossil fuels towards renewable sources heralds a new era of space heating consisting mainly of low exergy sources,such as heat pumps.This marks a major turning point in the history of domestic heating.This paper begins by discussing variations in domestic thermal environments before considering new forms of low carbon heating.Later sections analyse the way in which these systems deliver heat within people’s homes and consider the implications for thermal experience,comfort and energy consumption.展开更多
The machining unit of hobbing machine tool accounts for a large portion of the energy consumption during the operating phase.The optimization design is a practical means of energy saving and can reduce energy consumpt...The machining unit of hobbing machine tool accounts for a large portion of the energy consumption during the operating phase.The optimization design is a practical means of energy saving and can reduce energy consumption essentially.However,this issue has rarely been discussed in depth in previous research.A comprehensive function of energy consumption of the machining unit is built to address this problem.Surrogate models are established by using effective fitting methods.An integrated optimization model for reducing tool displacement and energy consumption is developed on the basis of the energy consumption function and surrogate models,and the parameters of the motor and structure are considered simultaneously.Results show that the energy consumption and tool displacement of the machining unit are reduced,indicating that energy saving is achieved and the machining accuracy is guaranteed.The influence of optimization variables on the objectives is analyzed to inform the design.展开更多
In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware m...In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.展开更多
In this paper,using potential flow theory and assuming that the pressure in the air cabin is proportional to the vertical velocity of the water column,we establish a hydrodynamic model for OWC wave energy convertors,r...In this paper,using potential flow theory and assuming that the pressure in the air cabin is proportional to the vertical velocity of the water column,we establish a hydrodynamic model for OWC wave energy convertors,resulting in a collection of illustrative plates,from which the behaviour of an OWC and the relation between its parameters are discussed. Optimization theory is used to design an optimum convertor working in irregular waves. It is found that the numerical results fit well the experimental data.展开更多
Evolution of periodic orbits in Sun-Mars and Sun-Earth systems are analyzed using Poincare surface of section technique and the effects of oblateness of smaller primary on these orbits are considered. It is observed t...Evolution of periodic orbits in Sun-Mars and Sun-Earth systems are analyzed using Poincare surface of section technique and the effects of oblateness of smaller primary on these orbits are considered. It is observed that oblateness of smaller primary has substantial effect on period, orbit’s shape, size and their position in the phase space. Since these orbits can be used for the design of low energy transfer trajectories, so perturbations due to planetary oblateness has to be understood and should be taken care of during trajectory design. In this paper, detailed stability analysis of periodic orbit having three loops is given for A<sub>2</sub> = 0.0001.展开更多
Evolution of periodic orbits in Sun-Mars and Sun-Earth systems are analyzed using Poincare surface of section technique and the effects of solar radiation pressure of bigger primary and actual oblateness...Evolution of periodic orbits in Sun-Mars and Sun-Earth systems are analyzed using Poincare surface of section technique and the effects of solar radiation pressure of bigger primary and actual oblateness of smaller primary on these orbits areconsidered. It is observed that solar radiation pressure of bigger primary has substantial effect on period, orbit’s shape, size and their position in the phase space. Since these orbits can be used for the design of low energy transfer trajectories, so perturbations due to solar radiation pressure has to be understood and should be taken care of during trajectory design. It is also verified that stability of such orbits are negligible so they can be used as transfer orbit. For each pair of solar radiation pressure q and Jacobi constant C we get two separatrices where stability of island becomes zero. In this paper, detailed stability analysis of periodic orbit having two loops is given when q = 0.9845.展开更多
Stepped cascades, chutes and spillways have been in use for more than three millennia. With the introduction of new construction materials and techniques, the staircase chute design has regained some interest within t...Stepped cascades, chutes and spillways have been in use for more than three millennia. With the introduction of new construction materials and techniques, the staircase chute design has regained some interest within the last forty years. The stepped invert increases significantly the energy dissipation occurring above the steep chute and reduces the size of the required downstream stilling structure. The application of stepped chutes further encompasses in-stream re-aeration and water treatment plant cascades, to enhance the air-water transfer of atmospheric gases and of volatile organic components. However, the engineering design of stepped spillways is not simple because of the hydrodynamic challenges, with several markedly different flow regimes, some complicated two-phase air-water fluid dynamics and massive rate of energy dissipation above the stepped chute. Simply, the technical challenges in the hydraulic design of stepped spillways are massive. This review paper examines the hydraulic characteristics of stepped chute flows and develops a reflection on nearly three decades of active hydraulic research, including recent field measurements during major flood events. The author aims to share his passion for the complicated hydraulic engineering, as well as some advice for engineering professionals and researchers.展开更多
The screening of advanced materials coupled with the modeling of their quantitative structural-activity relation-ships has recently become one of the hot and trending topics in energy materials due to the diverse chal...The screening of advanced materials coupled with the modeling of their quantitative structural-activity relation-ships has recently become one of the hot and trending topics in energy materials due to the diverse challenges,including low success probabilities,high time consumption,and high computational cost associated with the traditional methods of developing energy materials.Following this,new research concepts and technologies to promote the research and development of energy materials become necessary.The latest advancements in ar-tificial intelligence and machine learning have therefore increased the expectation that data-driven materials science would revolutionize scientific discoveries towards providing new paradigms for the development of en-ergy materials.Furthermore,the current advances in data-driven materials engineering also demonstrate that the application of machine learning technology would not only significantly facilitate the design and development of advanced energy materials but also enhance their discovery and deployment.In this article,the importance and necessity of developing new energy materials towards contributing to the global carbon neutrality are presented.A comprehensive introduction to the fundamentals of machine learning is also provided,including open-source databases,feature engineering,machine learning algorithms,and analysis of machine learning model.Afterwards,the latest progress in data-driven materials science and engineering,including alkaline ion battery materials,pho-tovoltaic materials,catalytic materials,and carbon dioxide capture materials,is discussed.Finally,relevant clues to the successful applications of machine learning and the remaining challenges towards the development of advanced energy materials are highlighted.展开更多
Buildings have contributed to the energy shortage, pollution and global climate change. To promote green buildings is the way access to the sustainable development. Currently, China has issued some regulations and sys...Buildings have contributed to the energy shortage, pollution and global climate change. To promote green buildings is the way access to the sustainable development. Currently, China has issued some regulations and systems to boost the green building. However, problems lie in China and the systems are not effective. USA and EU have rich experiences and fairly sophisticated legislation and policies to develop green building. China may get some lessens from these countries. This paper will make an overview of legal framework and main system of green building in China, then, analyses some important legal systems and typical case related green building in the USA and EU. Further, problems were pointed out in the China based on the comparative analysis of these countries. Lastly, according to the condition in China and lessons from USA and EU, this paper will put some suggests to promote green building, such as, take some measures to enhance the awareness of the stakeholders, create multi- incentive tools and so on.展开更多
Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing ...Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results.展开更多
基金Foundation item: Supported by the National Special Fund for Agro-scientific Research in the Public Interest (No.201003024), and the National Natural Science Foundation of China (No.51409042 No. 51209034).
文摘This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.
文摘More than 10000 different types of ship ply the waters of Bangladesh all year round,but the performance of these ships in terms of CO2 emission is not known and regulations related to energy efficiency of inland waterway ships remain nonexistent.This paper attempts to assess the present situation of inland class vessels in terms of Energy Efficiency Design Index(EEDI).With the use of a developed database of inland vessels in Bangladesh,EEDI reference lines for different types of inland vessels in Bangladesh were established and then compared with those of other countries.The present EEDI of existing inland vessels was investigated.Results indicate that most of the existing vessels do not meet the current EEDI baseline.Hence,new guidelines are necessary to achieve EEDI compliance in the near future.Some recommendations were proposed for improving CO2 emissions,with the socioeconomic and technical factors in Bangladesh taken into consideration.
文摘The paper use advantage of local natural resources, greening and sufficient water resources, combine natural ecological environment design with rural architecture, and fully consider local economic base and material technical conditions, and takes site selection and planning, architectural design technology as the two core aspects to study rural residential energy conservation, improving thermal environment of indoor residential that use of nature building energy saving technique, efforts to reduce the use of mechanical equipment system, thereby reducing the rural residential building energy consumption.
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
文摘Existing theories of thermal comfort are largely blind to the way heat is delivered to spaces.Field studies,however,show that people create and enjoy thermal conditions that lie outside conventional definitions of comfort-the thermal experience itself is valued-some of which are tied to particular ways of delivering heat.The concept“exergy”can be used to describe the quality of heat energy and its ability to provide warmth.A shift from fossil fuels towards renewable sources heralds a new era of space heating consisting mainly of low exergy sources,such as heat pumps.This marks a major turning point in the history of domestic heating.This paper begins by discussing variations in domestic thermal environments before considering new forms of low carbon heating.Later sections analyse the way in which these systems deliver heat within people’s homes and consider the implications for thermal experience,comfort and energy consumption.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.51975075 and 52105506)the Chongqing Technology Innovation and Application Program,China(Grant No.cstc2020jscx-msxmX0221).
文摘The machining unit of hobbing machine tool accounts for a large portion of the energy consumption during the operating phase.The optimization design is a practical means of energy saving and can reduce energy consumption essentially.However,this issue has rarely been discussed in depth in previous research.A comprehensive function of energy consumption of the machining unit is built to address this problem.Surrogate models are established by using effective fitting methods.An integrated optimization model for reducing tool displacement and energy consumption is developed on the basis of the energy consumption function and surrogate models,and the parameters of the motor and structure are considered simultaneously.Results show that the energy consumption and tool displacement of the machining unit are reduced,indicating that energy saving is achieved and the machining accuracy is guaranteed.The influence of optimization variables on the objectives is analyzed to inform the design.
基金supported partially by the National High Technical Research and Development Program of China (863 Program) under Grants No. 2011AA040101, No. 2008AA01Z134the National Natural Science Foundation of China under Grants No. 61003251, No. 61172049, No. 61173150+2 种基金the Doctoral Fund of Ministry of Education of China under Grant No. 20100006110015Beijing Municipal Natural Science Foundation under Grant No. Z111100054011078the 2012 Ladder Plan Project of Beijing Key Laboratory of Knowledge Engineering for Materials Science under Grant No. Z121101002812005
文摘In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.
文摘In this paper,using potential flow theory and assuming that the pressure in the air cabin is proportional to the vertical velocity of the water column,we establish a hydrodynamic model for OWC wave energy convertors,resulting in a collection of illustrative plates,from which the behaviour of an OWC and the relation between its parameters are discussed. Optimization theory is used to design an optimum convertor working in irregular waves. It is found that the numerical results fit well the experimental data.
文摘Evolution of periodic orbits in Sun-Mars and Sun-Earth systems are analyzed using Poincare surface of section technique and the effects of oblateness of smaller primary on these orbits are considered. It is observed that oblateness of smaller primary has substantial effect on period, orbit’s shape, size and their position in the phase space. Since these orbits can be used for the design of low energy transfer trajectories, so perturbations due to planetary oblateness has to be understood and should be taken care of during trajectory design. In this paper, detailed stability analysis of periodic orbit having three loops is given for A<sub>2</sub> = 0.0001.
文摘Evolution of periodic orbits in Sun-Mars and Sun-Earth systems are analyzed using Poincare surface of section technique and the effects of solar radiation pressure of bigger primary and actual oblateness of smaller primary on these orbits areconsidered. It is observed that solar radiation pressure of bigger primary has substantial effect on period, orbit’s shape, size and their position in the phase space. Since these orbits can be used for the design of low energy transfer trajectories, so perturbations due to solar radiation pressure has to be understood and should be taken care of during trajectory design. It is also verified that stability of such orbits are negligible so they can be used as transfer orbit. For each pair of solar radiation pressure q and Jacobi constant C we get two separatrices where stability of island becomes zero. In this paper, detailed stability analysis of periodic orbit having two loops is given when q = 0.9845.
文摘Stepped cascades, chutes and spillways have been in use for more than three millennia. With the introduction of new construction materials and techniques, the staircase chute design has regained some interest within the last forty years. The stepped invert increases significantly the energy dissipation occurring above the steep chute and reduces the size of the required downstream stilling structure. The application of stepped chutes further encompasses in-stream re-aeration and water treatment plant cascades, to enhance the air-water transfer of atmospheric gases and of volatile organic components. However, the engineering design of stepped spillways is not simple because of the hydrodynamic challenges, with several markedly different flow regimes, some complicated two-phase air-water fluid dynamics and massive rate of energy dissipation above the stepped chute. Simply, the technical challenges in the hydraulic design of stepped spillways are massive. This review paper examines the hydraulic characteristics of stepped chute flows and develops a reflection on nearly three decades of active hydraulic research, including recent field measurements during major flood events. The author aims to share his passion for the complicated hydraulic engineering, as well as some advice for engineering professionals and researchers.
基金This work was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project no.15222018).
文摘The screening of advanced materials coupled with the modeling of their quantitative structural-activity relation-ships has recently become one of the hot and trending topics in energy materials due to the diverse challenges,including low success probabilities,high time consumption,and high computational cost associated with the traditional methods of developing energy materials.Following this,new research concepts and technologies to promote the research and development of energy materials become necessary.The latest advancements in ar-tificial intelligence and machine learning have therefore increased the expectation that data-driven materials science would revolutionize scientific discoveries towards providing new paradigms for the development of en-ergy materials.Furthermore,the current advances in data-driven materials engineering also demonstrate that the application of machine learning technology would not only significantly facilitate the design and development of advanced energy materials but also enhance their discovery and deployment.In this article,the importance and necessity of developing new energy materials towards contributing to the global carbon neutrality are presented.A comprehensive introduction to the fundamentals of machine learning is also provided,including open-source databases,feature engineering,machine learning algorithms,and analysis of machine learning model.Afterwards,the latest progress in data-driven materials science and engineering,including alkaline ion battery materials,pho-tovoltaic materials,catalytic materials,and carbon dioxide capture materials,is discussed.Finally,relevant clues to the successful applications of machine learning and the remaining challenges towards the development of advanced energy materials are highlighted.
基金the key research project on the selection and application of the regulated tools [CLS(2011)B13],awarded by the China Law Societythe foundation from the United States Agency of the International Development,awarded by the Vermont Law School
文摘Buildings have contributed to the energy shortage, pollution and global climate change. To promote green buildings is the way access to the sustainable development. Currently, China has issued some regulations and systems to boost the green building. However, problems lie in China and the systems are not effective. USA and EU have rich experiences and fairly sophisticated legislation and policies to develop green building. China may get some lessens from these countries. This paper will make an overview of legal framework and main system of green building in China, then, analyses some important legal systems and typical case related green building in the USA and EU. Further, problems were pointed out in the China based on the comparative analysis of these countries. Lastly, according to the condition in China and lessons from USA and EU, this paper will put some suggests to promote green building, such as, take some measures to enhance the awareness of the stakeholders, create multi- incentive tools and so on.
基金financially supported by student research fund of National Institute of Technology,Tiruchirapalli–620 015, India
文摘Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results.