A Johann-type X-ray spectrometer was successfully developed at the hard X-ray branch(in-vacuum undulator with a 24-mm periodic length)of the energy material beamline(E-line)at the Shanghai Synchrotron Radiation Facili...A Johann-type X-ray spectrometer was successfully developed at the hard X-ray branch(in-vacuum undulator with a 24-mm periodic length)of the energy material beamline(E-line)at the Shanghai Synchrotron Radiation Facility(SSRF).This spectrometer was utilized to implement X-ray emission spectroscopy(XES),high-energy resolution fluorescence-detected X-ray absorption spectroscopy(HERFD-XAS),and resonant inelastic X-ray scattering.Seven spherically bent crystals were positioned on the respective vertical 500-mm-diameter Rowland circles,adopting an area detector to increase the solid angle to 1.75%of 4πsr,facilitating the study of low-concentrate systems under complex reaction conditions.Operated under the atmosphere pressure,the spectrometer covers the energy region from 3.5 to 18 keV,with the Bragg angle ranging from 73°to 86°during vertical scanning.It offers a promised energy resolution of sub-eV(XES)and super-eV(HERFD-XAS).Generally,these comprehensive core-level spectroscopy methods based on hard X-rays at the E-line with an extremely high photon flux can meet the crucial requirements of a green energy strategy.Moreover,they provide substantial support for scientific advances in fundamental research.展开更多
Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmen...Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.展开更多
Background: The ability of near-infrared reflectance spectroscopy(NIRS) to determine the digestible energy(DE)and metabolizable energy(ME) content of corn fed to growing pigs was tested. One hundred and sevente...Background: The ability of near-infrared reflectance spectroscopy(NIRS) to determine the digestible energy(DE)and metabolizable energy(ME) content of corn fed to growing pigs was tested. One hundred and seventeen corn samples, comprising different planting regions and varieties were collected from all over China in a three-year period. The samples were randomly split into a calibration set(n = 88) and a validation set(n = 29). The actual and calculated DE and ME content of the corn samples was determined by digestion-metabolism experiments and the prediction equations of Noblet and Perez(J Anim Sci. 71:3389–98,1993). The samples were then subjected to NIRS scanning and calibrations were performed by the modified partial least square(MPLS) regression method based on77 different spectral pre-treatments. The NIRS equations based on the actually determined and calculated DE and ME were built separately and then validated using validation samples.Results: The NIRS equations obtained from actually determined DE, the coefficient of determination for calibration(RSQcal), cross-validation(R^2CV), and validation(RSQv) were 0.89, 0.87 and 0.86, and these values for determined ME were 0.87, 0.86 and 0.86. For the NIRS equations built from calculated DE, the RSQcal, R^2CV, and RSQvvalues were 0.88, 0.85 and 0.84, and these values for calculated ME were 0.86, 0.84 and 0.82. Except for the equation based on calculated ME(RPD_v= 2.38, 〈 2.50), the other three equations built from actually determined energy and calculated DE produced good prediction performance(RPD_vranging from 2.53 to 2.69, 〉 2.50) when applied to validation samples.Conclusion: These results indicate that NIRS can be used as a quantitative method for the rapid determination of the available energy in corn fed to growing pigs, and the NIRS equations based on the actually determined energy produced better predictive performance than those built from calculated energy values.展开更多
Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monome...Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast compo- nent (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of t=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.展开更多
Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameter...Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameters of EPDs based on the Si-PIN photodetectors include photon energy response(PER),angular response,inherent error,and dose rate linearity.Among them,PER is a key parameter for evaluation of EPD measurement accuracy.At present,owing to the limitations of volume,power consumption,and EPD cost,the PER is usually corrected by a combination of single-channel counting techniques and filtering material methods.However,the above-mentioned methods have problems such as poor PER and low measurement accuracy.To solve such problems,in this study,a 1024-channel spectrometry system using a Si-PIN photodetector was developed and fullspectrum measurement in the reference radiation fields was conducted for radiation protection.The measurement results using the few-channel spectroscopy dose method showed that the PER could be controlled within±14%and±2%under the conditions of two and three energy intervals,respectively,with different channel numbers.The PER measured at 0°angle of radiation incidence meets the-29%to+67%requirements of IEC 61526:2010.Meanwhile,the channel number and counts-to-dose conversion factors formed in the experiment can be integrated into an EPD.展开更多
A 16-channel gated integrator(GI) module following semi-Gaussian shaping amplifiers was developed for high-resolution energy spectroscopy systems at Institute of Modern Physics,Chinese Academy of Sciences.This GI solv...A 16-channel gated integrator(GI) module following semi-Gaussian shaping amplifiers was developed for high-resolution energy spectroscopy systems at Institute of Modern Physics,Chinese Academy of Sciences.This GI solved the ballistic deficit problem by integrating the signal until all the charge was collected from the detector at counting rates up to 100 K.In this paper,a fast shaper was used to optimize the gate logic to ensure nonlinearity of the GI less than 0.17%;and a novel compensation approach,to reduce the charge injection from the switches in the GI; and a T-switch configuration,to eliminate leakage current in the reset switch.展开更多
The photoacoustic spectra of Eu ( benz)(3) (.) ( phen)(2) ( benz: benzoate, phen: phenanthroline) and Eu-0.(8)Ln(0.2)(benz)(3)(.)(phen)(2)(Ln(3+) : La3+ or Nd3+) were reported. The intermolecular energy transfer proce...The photoacoustic spectra of Eu ( benz)(3) (.) ( phen)(2) ( benz: benzoate, phen: phenanthroline) and Eu-0.(8)Ln(0.2)(benz)(3)(.)(phen)(2)(Ln(3+) : La3+ or Nd3+) were reported. The intermolecular energy transfer processes were studied from the point of the nonradiative transitions. Combined with the fluorescence spectroscopy, photoacoustic spectroscopy reflects the variation of the luminescence efficiencies of solid samples. The luminescence efficiency increases when La3+ is introduced, but it decreases greatly when Nd3+ is added, which is due to the difference of intermolecular energy transfer processes. The models of intramolecular and intermolecular energy transfer and relaxation processes were established.展开更多
Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-ti...Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance.展开更多
In this work,electron energy spectroscopic mapping of surface plasmon of Ag nanostructures on highly oriented pyrolytic graphite is reported.Benefitting from the angular dispersive feature of the present scanning prob...In this work,electron energy spectroscopic mapping of surface plasmon of Ag nanostructures on highly oriented pyrolytic graphite is reported.Benefitting from the angular dispersive feature of the present scanning probe electron energy spectrometer,a multi-channel detection mode is developed.By scanning along one direction,the two-dimensional intensity distribution of Ag surface plasmon excitation due to the collision of electron emitted from the tip can be obtained in parallel.The spectroscopic spatial resolution is determined to be around 80 nm.展开更多
Laser-induced plasmas of dual-pulse fiber-optic laser-induced breakdown spectroscopy with different pulse energy ratios are studied by using the optical emission spectroscopy(OES)and fast imaging.The energy of the two...Laser-induced plasmas of dual-pulse fiber-optic laser-induced breakdown spectroscopy with different pulse energy ratios are studied by using the optical emission spectroscopy(OES)and fast imaging.The energy of the two laser pulses is independently adjusted within 0–30 m J with the total energy fixed at 30 m J.The inter-pulse delay remains 450 ns constantly.As the energy share of the first pulse increases,a similar bimodal variation trend of line intensities is observed.The two peaks are obtained at the point where the first pulse is half or twice of the second one,and the maximum spectral enhancement is at the first peak.The bimodal variation trend is induced by the change in the dominated mechanism of dual-pulse excitation with the trough between the two peaks caused by the weak coupling between the two mechanisms.By increasing the first pulse energy,there is a transition from the ablation enhancement dominance near the first peak to the plasma reheating dominance near the second peak.The calculations of plasma temperature and electron number density are consistent with the bimodal trend,which have the values of 17024.47 K,2.75×10^(17)cm;and 12215.93 K,1.17×10^(17)cm;at a time delay of 550 ns.In addition,the difference between the two peaks decreases with time delay.With the increase in the first pulse energy share,the plasma morphology undergoes a transformation from hemispherical to shiny-dot and to oblate-cylinder structure during the second laser irradiation from the recorded images by using an intensified charge-coupled device(ICCD)camera.Correspondingly,the peak expansion distance of the plasma front first decreases significantly from 1.99 mm in the single-pulse case to 1.34 mm at 12/18(dominated by ablation enhancement)and then increases slightly with increasing the plasma reheating effect.The variations in plasma dynamics verify that the change of pulse energy ratios leads to a transformation in the dual-pulse excitation mechanism.展开更多
To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantit...To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.展开更多
This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscop...This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscopy (EDS) technique is used for the detection of major elements and the effects of shifting depositional climatic conditions of six representative samples which were acquired from the Sohnari Member of the Laki Formation at Lakhra area, Sindh, Pakistan. The sedimentological studies clarify that the sediments the Sonahri Member are relatively immature and most migrated in clastic mode. The availability of Silica shows that the Member was formed due to biochemical precipitation and detrital mode and was deposited at a fast rate of sediment deposition under the fluvio-deltaic depositional system. This is also deduced that the rapid rate of sediment deposition might be created a reducing atmosphere and allowing for the mineralization of sulphur.展开更多
The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 an...The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.展开更多
Site characterization and rapid reliable identification of energy resources play a key role for future efficient energy production.Over the last several decades,many laboratory and in-situ techniques were developed to...Site characterization and rapid reliable identification of energy resources play a key role for future efficient energy production.Over the last several decades,many laboratory and in-situ techniques were developed to qualitatively and quantitatively characterize the sites and minerals.Despite the advancements,there are still many challenges associated with exploration,rapid detection,and spatial interpolation of the energy resources within a site.Spectroscopy techniques offer solutions to the current ongoing efforts on site characterization,exploration and collection of resources,quality control monitoring during production,and reclamation of the production sites due to environmental contamination.Spectral analysis has shown great promise in providing in-situ measurements that are comparable to arduous laboratory physio-chemical analysis.Spectroscopy is a fairly new technology in some sectors and has seen limited use but has shown great potential in exceeding the minimum standards implemented.This paper presents review of the current spectroscopy techniques that have been used in the agriculture,landfill,nuclear power,mining,and ground contamination industries with respect to the production of energy.A general overview of how spectral analysis techniques are being used to benefit each of these sectors along with some of the drawbacks associated with each is presented.Three frameworks including basic process,operation flowchart,minimum number of tests to be performed,and information on spatial interpolation analysis are presented.These frameworks along with the basic processes can be implemented for characterization of energy resource sites。展开更多
We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for...We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS for f and d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.展开更多
The conformers of allyl alcohol and allyl mercaptan were studied with B3LYP/aug-cc-pVTZ method. Their relative energies were calculated at MP3, MP4(SDQ), and CCSD(T) levels. The most stable conformers for these tw...The conformers of allyl alcohol and allyl mercaptan were studied with B3LYP/aug-cc-pVTZ method. Their relative energies were calculated at MP3, MP4(SDQ), and CCSD(T) levels. The most stable conformers for these two molecules are Gauche-gauche' (Gg'). The theo-retical photoelectron spectra simulated with the calculated ionization energies demonstrate that there are at least four conformers in allyl alcohol and four conformers in allyl mercaptan in the gas-phase experiments. The Dyson orbitals of the highest occupied molecular orbital (HOMO) and the next HOMO (HOMO-1) of allyl mercaptan Ggt conformer show strongly mixing ns and πc=c characteristics, which may be due to the resonance and inductive effects between πc=c and ns in HOMO-1 and HOMO.展开更多
The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna co...The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by alpha- and beta-apoprotein helices. The alpha- and beta-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 run (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.展开更多
A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with ...A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with the bovine serum albumin (BSA) in detail using different spectroscopic methods. It ex- hibited antibacterial activity against Escherichia cali and Staphylococcus aureus which are common food poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of binding sites (n ≈ 1) were determined at three different temperatures based on fluorescence quenching results. The thermodynamic parameters, enthalpy change (AH), free energy (AG) and entropy change (AS) for the reaction were calculated to be 15.15 kJ/mol, -36.11 kJ/mol and 51.26J/mol K according to van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in the binding between drug and BSA. The distance between donor and acceptor is 2.79 nm according to Forster's theory. The alterations of the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV-visible, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence spectra. All these results in- dicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can be a useful guideline for further drug design.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1503801,2021YFA1600800)the Photon Science Center for Carbon Neutrality of Chinese Academy of Sciences+2 种基金Shanghai Science and Technology Development Funds(Nos.22YF1454500,23ZR1471400)the CAS Project for Young Scientists in Basic Research(No.YSBR-022)the National Natural Science Foundation of China(No.12305375)。
文摘A Johann-type X-ray spectrometer was successfully developed at the hard X-ray branch(in-vacuum undulator with a 24-mm periodic length)of the energy material beamline(E-line)at the Shanghai Synchrotron Radiation Facility(SSRF).This spectrometer was utilized to implement X-ray emission spectroscopy(XES),high-energy resolution fluorescence-detected X-ray absorption spectroscopy(HERFD-XAS),and resonant inelastic X-ray scattering.Seven spherically bent crystals were positioned on the respective vertical 500-mm-diameter Rowland circles,adopting an area detector to increase the solid angle to 1.75%of 4πsr,facilitating the study of low-concentrate systems under complex reaction conditions.Operated under the atmosphere pressure,the spectrometer covers the energy region from 3.5 to 18 keV,with the Bragg angle ranging from 73°to 86°during vertical scanning.It offers a promised energy resolution of sub-eV(XES)and super-eV(HERFD-XAS).Generally,these comprehensive core-level spectroscopy methods based on hard X-rays at the E-line with an extremely high photon flux can meet the crucial requirements of a green energy strategy.Moreover,they provide substantial support for scientific advances in fundamental research.
文摘Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.
基金financially supported by China Special Public Sector Fund in Agriculture(200903006)The collection of data and analysis were funded by National Key Technology Research and Development Program(2011BAD26B0404)The interpretation of data and writing of the manuscript were supported by 111 Project(B16044)
文摘Background: The ability of near-infrared reflectance spectroscopy(NIRS) to determine the digestible energy(DE)and metabolizable energy(ME) content of corn fed to growing pigs was tested. One hundred and seventeen corn samples, comprising different planting regions and varieties were collected from all over China in a three-year period. The samples were randomly split into a calibration set(n = 88) and a validation set(n = 29). The actual and calculated DE and ME content of the corn samples was determined by digestion-metabolism experiments and the prediction equations of Noblet and Perez(J Anim Sci. 71:3389–98,1993). The samples were then subjected to NIRS scanning and calibrations were performed by the modified partial least square(MPLS) regression method based on77 different spectral pre-treatments. The NIRS equations based on the actually determined and calculated DE and ME were built separately and then validated using validation samples.Results: The NIRS equations obtained from actually determined DE, the coefficient of determination for calibration(RSQcal), cross-validation(R^2CV), and validation(RSQv) were 0.89, 0.87 and 0.86, and these values for determined ME were 0.87, 0.86 and 0.86. For the NIRS equations built from calculated DE, the RSQcal, R^2CV, and RSQvvalues were 0.88, 0.85 and 0.84, and these values for calculated ME were 0.86, 0.84 and 0.82. Except for the equation based on calculated ME(RPD_v= 2.38, 〈 2.50), the other three equations built from actually determined energy and calculated DE produced good prediction performance(RPD_vranging from 2.53 to 2.69, 〉 2.50) when applied to validation samples.Conclusion: These results indicate that NIRS can be used as a quantitative method for the rapid determination of the available energy in corn fed to growing pigs, and the NIRS equations based on the actually determined energy produced better predictive performance than those built from calculated energy values.
文摘Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast compo- nent (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of t=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.
基金This work was partly supported by the National Key Scientific Instruments to Develop Dedicated Program(Nos.2013YQ090811 and 2016YFF0103800)the National Key Research and Development Program(No.2017YFF0211100).
文摘Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameters of EPDs based on the Si-PIN photodetectors include photon energy response(PER),angular response,inherent error,and dose rate linearity.Among them,PER is a key parameter for evaluation of EPD measurement accuracy.At present,owing to the limitations of volume,power consumption,and EPD cost,the PER is usually corrected by a combination of single-channel counting techniques and filtering material methods.However,the above-mentioned methods have problems such as poor PER and low measurement accuracy.To solve such problems,in this study,a 1024-channel spectrometry system using a Si-PIN photodetector was developed and fullspectrum measurement in the reference radiation fields was conducted for radiation protection.The measurement results using the few-channel spectroscopy dose method showed that the PER could be controlled within±14%and±2%under the conditions of two and three energy intervals,respectively,with different channel numbers.The PER measured at 0°angle of radiation incidence meets the-29%to+67%requirements of IEC 61526:2010.Meanwhile,the channel number and counts-to-dose conversion factors formed in the experiment can be integrated into an EPD.
基金Supported by the Important Direction Project of the CAS Knowledge Innovation Program(No.KJCX2-YW-N27)the National Natural Science Foundation of China(No.11005135)
文摘A 16-channel gated integrator(GI) module following semi-Gaussian shaping amplifiers was developed for high-resolution energy spectroscopy systems at Institute of Modern Physics,Chinese Academy of Sciences.This GI solved the ballistic deficit problem by integrating the signal until all the charge was collected from the detector at counting rates up to 100 K.In this paper,a fast shaper was used to optimize the gate logic to ensure nonlinearity of the GI less than 0.17%;and a novel compensation approach,to reduce the charge injection from the switches in the GI; and a T-switch configuration,to eliminate leakage current in the reset switch.
文摘The photoacoustic spectra of Eu ( benz)(3) (.) ( phen)(2) ( benz: benzoate, phen: phenanthroline) and Eu-0.(8)Ln(0.2)(benz)(3)(.)(phen)(2)(Ln(3+) : La3+ or Nd3+) were reported. The intermolecular energy transfer processes were studied from the point of the nonradiative transitions. Combined with the fluorescence spectroscopy, photoacoustic spectroscopy reflects the variation of the luminescence efficiencies of solid samples. The luminescence efficiency increases when La3+ is introduced, but it decreases greatly when Nd3+ is added, which is due to the difference of intermolecular energy transfer processes. The models of intramolecular and intermolecular energy transfer and relaxation processes were established.
基金supported by the National Natural Science Foundation of China(No.61805134 and No.11974229)Applied Basic Research Program in Shanxi Province,China(No.201801D221016 and No.202103021223254)+2 种基金Scientific and Technological Innovation Pro-grams of Higher Education Institutions in Shanxi(No.2020L0235 and No.2021L257)Linfen Key Re-search and Development Program(No.2028)Graduate Innovation Project in Shanxi Province(No.2022Y498).
文摘Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance.
基金supported by the National Key Research and Development Program of China(No.2017YFA0303500)the National Natural Science Foundation of China(No.11674302)。
文摘In this work,electron energy spectroscopic mapping of surface plasmon of Ag nanostructures on highly oriented pyrolytic graphite is reported.Benefitting from the angular dispersive feature of the present scanning probe electron energy spectrometer,a multi-channel detection mode is developed.By scanning along one direction,the two-dimensional intensity distribution of Ag surface plasmon excitation due to the collision of electron emitted from the tip can be obtained in parallel.The spectroscopic spatial resolution is determined to be around 80 nm.
基金the Foundation Research Project of Jiangsu Province,China(the Natural Science Fund No.BK20190187)。
文摘Laser-induced plasmas of dual-pulse fiber-optic laser-induced breakdown spectroscopy with different pulse energy ratios are studied by using the optical emission spectroscopy(OES)and fast imaging.The energy of the two laser pulses is independently adjusted within 0–30 m J with the total energy fixed at 30 m J.The inter-pulse delay remains 450 ns constantly.As the energy share of the first pulse increases,a similar bimodal variation trend of line intensities is observed.The two peaks are obtained at the point where the first pulse is half or twice of the second one,and the maximum spectral enhancement is at the first peak.The bimodal variation trend is induced by the change in the dominated mechanism of dual-pulse excitation with the trough between the two peaks caused by the weak coupling between the two mechanisms.By increasing the first pulse energy,there is a transition from the ablation enhancement dominance near the first peak to the plasma reheating dominance near the second peak.The calculations of plasma temperature and electron number density are consistent with the bimodal trend,which have the values of 17024.47 K,2.75×10^(17)cm;and 12215.93 K,1.17×10^(17)cm;at a time delay of 550 ns.In addition,the difference between the two peaks decreases with time delay.With the increase in the first pulse energy share,the plasma morphology undergoes a transformation from hemispherical to shiny-dot and to oblate-cylinder structure during the second laser irradiation from the recorded images by using an intensified charge-coupled device(ICCD)camera.Correspondingly,the peak expansion distance of the plasma front first decreases significantly from 1.99 mm in the single-pulse case to 1.34 mm at 12/18(dominated by ablation enhancement)and then increases slightly with increasing the plasma reheating effect.The variations in plasma dynamics verify that the change of pulse energy ratios leads to a transformation in the dual-pulse excitation mechanism.
基金Funded by the International Science&Technology Cooperation Program of Hubei Province of China(No.2022EHB024)。
文摘To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.
文摘This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscopy (EDS) technique is used for the detection of major elements and the effects of shifting depositional climatic conditions of six representative samples which were acquired from the Sohnari Member of the Laki Formation at Lakhra area, Sindh, Pakistan. The sedimentological studies clarify that the sediments the Sonahri Member are relatively immature and most migrated in clastic mode. The availability of Silica shows that the Member was formed due to biochemical precipitation and detrital mode and was deposited at a fast rate of sediment deposition under the fluvio-deltaic depositional system. This is also deduced that the rapid rate of sediment deposition might be created a reducing atmosphere and allowing for the mineralization of sulphur.
文摘The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.
文摘Site characterization and rapid reliable identification of energy resources play a key role for future efficient energy production.Over the last several decades,many laboratory and in-situ techniques were developed to qualitatively and quantitatively characterize the sites and minerals.Despite the advancements,there are still many challenges associated with exploration,rapid detection,and spatial interpolation of the energy resources within a site.Spectroscopy techniques offer solutions to the current ongoing efforts on site characterization,exploration and collection of resources,quality control monitoring during production,and reclamation of the production sites due to environmental contamination.Spectral analysis has shown great promise in providing in-situ measurements that are comparable to arduous laboratory physio-chemical analysis.Spectroscopy is a fairly new technology in some sectors and has seen limited use but has shown great potential in exceeding the minimum standards implemented.This paper presents review of the current spectroscopy techniques that have been used in the agriculture,landfill,nuclear power,mining,and ground contamination industries with respect to the production of energy.A general overview of how spectral analysis techniques are being used to benefit each of these sectors along with some of the drawbacks associated with each is presented.Three frameworks including basic process,operation flowchart,minimum number of tests to be performed,and information on spatial interpolation analysis are presented.These frameworks along with the basic processes can be implemented for characterization of energy resource sites。
基金Supported by the National Key Laboratory Foundation of China (9140C6601010804)Sichuan Provincial Key Laboratory for Applied Nuclear Technology in Geology Foundation (27-7).
文摘We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS for f and d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.
文摘The conformers of allyl alcohol and allyl mercaptan were studied with B3LYP/aug-cc-pVTZ method. Their relative energies were calculated at MP3, MP4(SDQ), and CCSD(T) levels. The most stable conformers for these two molecules are Gauche-gauche' (Gg'). The theo-retical photoelectron spectra simulated with the calculated ionization energies demonstrate that there are at least four conformers in allyl alcohol and four conformers in allyl mercaptan in the gas-phase experiments. The Dyson orbitals of the highest occupied molecular orbital (HOMO) and the next HOMO (HOMO-1) of allyl mercaptan Ggt conformer show strongly mixing ns and πc=c characteristics, which may be due to the resonance and inductive effects between πc=c and ns in HOMO-1 and HOMO.
文摘The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by alpha- and beta-apoprotein helices. The alpha- and beta-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 run (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.
基金receiving a fellowship from UGCNew Delhi[University Grant Commission,the XIth plan(Faculty Improvement Programme)]DST and UGC for providing funds to the department under FIST and SAP programme
文摘A biologically active antibacterial reagent, 2-amino-6-hydroxy-4-(4-N, N-dimethylaminophenyl)-pyr- imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in- teraction with the bovine serum albumin (BSA) in detail using different spectroscopic methods. It ex- hibited antibacterial activity against Escherichia cali and Staphylococcus aureus which are common food poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of binding sites (n ≈ 1) were determined at three different temperatures based on fluorescence quenching results. The thermodynamic parameters, enthalpy change (AH), free energy (AG) and entropy change (AS) for the reaction were calculated to be 15.15 kJ/mol, -36.11 kJ/mol and 51.26J/mol K according to van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in the binding between drug and BSA. The distance between donor and acceptor is 2.79 nm according to Forster's theory. The alterations of the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV-visible, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence spectra. All these results in- dicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can be a useful guideline for further drug design.