Let Bi be a unit disc of R^2,and H be a completion of C0^∞(B1)under the norm||u||^2H=∫B1(|■u|^2-u^2/(1-|x|^2)^2)dx.Using blow-up analysis,Wang-Ye[1]proved existence of extremals for a Hardy-Trudinger-Moser inequali...Let Bi be a unit disc of R^2,and H be a completion of C0^∞(B1)under the norm||u||^2H=∫B1(|■u|^2-u^2/(1-|x|^2)^2)dx.Using blow-up analysis,Wang-Ye[1]proved existence of extremals for a Hardy-Trudinger-Moser inequality.In particular,the supremum u∈,H,^sup||u|,H≤|1∫B1^e4πu2dx can be attained by some function u0∈H with||u0|H=1|This was improved by the author and Zhu[2]to a version involving the first eigenvalue of the Hardy-Laplacian operator-△-1/(1-|x|^2)^2.In this note,the results of[1,2]will be reproved by the method of energy estimate,which was recently developed by Malchiodi-Martinazzi[3]and Mancini-Martinazzi[4].展开更多
In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ...In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.展开更多
In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-p...In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.展开更多
In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the cont...In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.展开更多
The successful implementation of Renewable Energy Communities(RECs)involves maximizing the self-consumption within a community,particularly in regulatory contexts in which shared energy is incentivized.In many countri...The successful implementation of Renewable Energy Communities(RECs)involves maximizing the self-consumption within a community,particularly in regulatory contexts in which shared energy is incentivized.In many countries,the absence of a metering infrastructure that provides data at an hourly or sub-hourly resolution level for low-voltage users(e.g.,residential and commercial users)makes the design of a new energy community a challenging task.This study proposes a non-intrusive machine learning methodology that can be used to generate residential electrical consumption profiles at an hourly resolution level using only monthly consumption data(i.e.,billed energy),with the aim of estimating the energy shared by RECs.The proposed methodology involves three phases:first,identifying the typical load patterns of residential users through k-Means clustering,then implementing a Random Forest algorithm,based on monthly energy bills,to identify typical load patterns and,finally,reconstructing the hourly electrical load profile through a data-driven rescaling procedure.The effectiveness of the proposed methodology has been evaluated through an REC case study composed by 37 residential users powered by a 70 kWp photovoltaic plant.The Normalized Mean Absolute Error(NMAE)and the Normalized Root Mean Squared Error(NRMSE)were evaluated over an entire year and whenever the energy was shared within the REC.The Relative Absolute Error was also measured when estimating the shared energy at both a monthly(MRAE)and at an annual basis.(RAE).A comparison between the REC load profile reconstructed using the proposed methodology and the real load profile yielded an overall NMAE of 20.04%,an NRMSE of 26.17%,and errors of 18.34%and 23.87%during shared energy timeframes,respectively.Furthermore,our model delivered relative absolute errors for the estimation of the shared energy at a monthly and annual scale of 8.31%and 0.12%,respectively.展开更多
We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic ...We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic behavior of solutions,an inevitable step is to deal with the integralΩ|ut|^(m−2)utudx.A usual technique is to apply Young’s inequality and Sobolev embedding inequality to use the energy function and its derivative to control this integral for the subcritical or critical damping.However,for the supercritical case,the failure of the Sobolev embedding inequality makes the classical method be impossible.To do this,our strategy is to prove the rate of the integral RΩ|u|^(m)dx grows polynomially as a positive power of time variable t and apply the modified multiplier method to obtain the energy functional decays logarithmically.These results improve and extend our previous work[12].Finally,some numerical examples are also given to authenticate our results.展开更多
This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standar...This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standard iteration technique, then we deduce the basic energy estimate by constructing a convex entropy-entropy flux pair to this system. Moreover, the L∞-estimates and H^2-estimates of solutions are obtained through some delicate estimates. In our results, we do not ask the far fields of the initial data to be equal and the initial data can be arbitrarily large which generalize the result obtained in [7].展开更多
The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is...The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is obtained, i.e., it is shown that in appropriate norms solutions of the equations either grow or decay as some spatial variable tends to infinity.展开更多
In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, whi...In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, which include the well-known p-system. From this viewpoint, the author establishes the global existence and the nonlinear stability of travelling wave solutions by L-2 energy method.展开更多
This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infi...This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infinite while keeping the Boltzmann number constant. In the case when the corresponding Euler system admits a contact discontinuity wave, Wang and Xie (2011) [12] recently verified this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact 1 discontinuity wave in the L∞-norm away from the discontinuity line at a rate of ε1/4, as the reciprocal of the Bouguer number tends to zero. In this paper, Wang and Xie's convergence rate is improved to ε7/8 by introducing a new a priori assumption and some refined energy estimates. Moreover, it is shown that the radiation flux q tends to zero in the L∞-norm away from the discontinuity line, at a convergence rate as the reciprocal of the Bouguer number tends to zero.展开更多
This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θ...This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θx+βζxx;with initial data and end states (ζθ)(x,0)=(ζ0,θ0)(x)→(ζ±,θ±)as x→∞.We obtain the existence of traveling wave solutions by phase plane analysis and show the asymptotic nonlinear stability of traveling wave solutions without restrictions on the coeffi- cients a and v by the method of energy estimates.展开更多
For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consid...For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consider a more general 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null conditions with small initial data and the coefficients depending simultaneously on u and δu. Through construction of an approximate solution, combined with weighted energy integral method, a quasi-global or global existence solution are established by continuous induction.展开更多
This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Go...This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Goodman [5] for the nonlinear stability of scalar viscous shock profiles to scalar viscous conservation laws and some new decay estimates on the planar shock profiles of the generalized KdV-Burgers equation.展开更多
The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied w...The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.展开更多
This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under ...This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.展开更多
We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the unifo...We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the uniform global existence of the solutions and the combined quasi-neutral and zero-electron-mass limit of the system are proved when the initial data are close to the constant equilibrium state.In particular,the limit is rigorously justified as the two parameters tend to zero independently.展开更多
In the paper, by using the methods of compensated compactness and energy estimate, the convergence of class of fourth and sixth orders singular perturbed, partial differential equations is obtained, and furthermore, t...In the paper, by using the methods of compensated compactness and energy estimate, the convergence of class of fourth and sixth orders singular perturbed, partial differential equations is obtained, and furthermore, the regularity of solutions are improved.展开更多
In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, w...In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.展开更多
We consider the large time behavior of solutions of the Cauchy problem for the one-dimensional compressible Navier-Stokes equations for a reacting mixture.When the corresponding Riemann problem for the Euler system ad...We consider the large time behavior of solutions of the Cauchy problem for the one-dimensional compressible Navier-Stokes equations for a reacting mixture.When the corresponding Riemann problem for the Euler system admits a contact discontinuity wave,it is shown that the viscous contact wave which corresponds to the contact discontinuity is asymptotically stable,provided the strength of contact discontinuity and the initial perturbation are suitably small.We apply the approach introduced in Huang,Li and Matsumura(2010)[1]and the elemen tary L2-energy met hods.展开更多
基金supported by the National Science Foundation of China(Grant Nos.11471014 and 11761131002).
文摘Let Bi be a unit disc of R^2,and H be a completion of C0^∞(B1)under the norm||u||^2H=∫B1(|■u|^2-u^2/(1-|x|^2)^2)dx.Using blow-up analysis,Wang-Ye[1]proved existence of extremals for a Hardy-Trudinger-Moser inequality.In particular,the supremum u∈,H,^sup||u|,H≤|1∫B1^e4πu2dx can be attained by some function u0∈H with||u0|H=1|This was improved by the author and Zhu[2]to a version involving the first eigenvalue of the Hardy-Laplacian operator-△-1/(1-|x|^2)^2.In this note,the results of[1,2]will be reproved by the method of energy estimate,which was recently developed by Malchiodi-Martinazzi[3]and Mancini-Martinazzi[4].
文摘In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.
基金partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100523,KJQN202000536)the National Natural Science Foundation of China(12001074)+3 种基金the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0606)supported by the National Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0278)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202100503)the Research Project of Chongqing Education Commission(CXQT21014)。
文摘In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.
文摘In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.
基金the project“Network 4 Energy Sustainable Transition-NEST”,Project code PE0000021Concession Decree No.1561 of 11.10.2022 adopted by Ministero dell’Universit`a e della Ricerca(MUR),CUP E13C22001890001+1 种基金funded under the National Recovery and Resilience Plan(NRRP),Mission 4 Component 2 Investment 1.3-Call for tender No.341 of 15.03.2022 of MURfunded by the European Union-NextGenerationEU.
文摘The successful implementation of Renewable Energy Communities(RECs)involves maximizing the self-consumption within a community,particularly in regulatory contexts in which shared energy is incentivized.In many countries,the absence of a metering infrastructure that provides data at an hourly or sub-hourly resolution level for low-voltage users(e.g.,residential and commercial users)makes the design of a new energy community a challenging task.This study proposes a non-intrusive machine learning methodology that can be used to generate residential electrical consumption profiles at an hourly resolution level using only monthly consumption data(i.e.,billed energy),with the aim of estimating the energy shared by RECs.The proposed methodology involves three phases:first,identifying the typical load patterns of residential users through k-Means clustering,then implementing a Random Forest algorithm,based on monthly energy bills,to identify typical load patterns and,finally,reconstructing the hourly electrical load profile through a data-driven rescaling procedure.The effectiveness of the proposed methodology has been evaluated through an REC case study composed by 37 residential users powered by a 70 kWp photovoltaic plant.The Normalized Mean Absolute Error(NMAE)and the Normalized Root Mean Squared Error(NRMSE)were evaluated over an entire year and whenever the energy was shared within the REC.The Relative Absolute Error was also measured when estimating the shared energy at both a monthly(MRAE)and at an annual basis.(RAE).A comparison between the REC load profile reconstructed using the proposed methodology and the real load profile yielded an overall NMAE of 20.04%,an NRMSE of 26.17%,and errors of 18.34%and 23.87%during shared energy timeframes,respectively.Furthermore,our model delivered relative absolute errors for the estimation of the shared energy at a monthly and annual scale of 8.31%and 0.12%,respectively.
基金supported by the Scientific and Technological Project of jilin Province's Education Department in Thirteenth Five-Year(JKH20180111KI)supported by NSFC(11301211).
文摘We are concerned with the following quasilinear wave equation involving variable sources and supercritical damping:■Generally speaking,when one tries to use the classical multiplier method to analyze tRhe asymptotic behavior of solutions,an inevitable step is to deal with the integralΩ|ut|^(m−2)utudx.A usual technique is to apply Young’s inequality and Sobolev embedding inequality to use the energy function and its derivative to control this integral for the subcritical or critical damping.However,for the supercritical case,the failure of the Sobolev embedding inequality makes the classical method be impossible.To do this,our strategy is to prove the rate of the integral RΩ|u|^(m)dx grows polynomially as a positive power of time variable t and apply the modified multiplier method to obtain the energy functional decays logarithmically.These results improve and extend our previous work[12].Finally,some numerical examples are also given to authenticate our results.
基金Huijiang Zhao was supported by the National Natural Science Foundation of China (10871151)Changjiang Zhu was supported by the National Natural Science Foundation of China (10625105 and 10431060)the Program for New Century Excellent Talentsin University (NCET-04-0745)
文摘This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standard iteration technique, then we deduce the basic energy estimate by constructing a convex entropy-entropy flux pair to this system. Moreover, the L∞-estimates and H^2-estimates of solutions are obtained through some delicate estimates. In our results, we do not ask the far fields of the initial data to be equal and the initial data can be arbitrarily large which generalize the result obtained in [7].
文摘The present paper investigates the asymptotic behavior of solutions for a class of second order inhomogeneous quasilinear equations on a three dimensional semiinfinite cylinder. A Phragmen-Lindelof type alternative is obtained, i.e., it is shown that in appropriate norms solutions of the equations either grow or decay as some spatial variable tends to infinity.
文摘In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, which include the well-known p-system. From this viewpoint, the author establishes the global existence and the nonlinear stability of travelling wave solutions by L-2 energy method.
基金supported by the Doctoral Scientific Research Funds of Anhui University(J10113190005)the Tian Yuan Foundation of China(11426031)
文摘This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infinite while keeping the Boltzmann number constant. In the case when the corresponding Euler system admits a contact discontinuity wave, Wang and Xie (2011) [12] recently verified this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact 1 discontinuity wave in the L∞-norm away from the discontinuity line at a rate of ε1/4, as the reciprocal of the Bouguer number tends to zero. In this paper, Wang and Xie's convergence rate is improved to ε7/8 by introducing a new a priori assumption and some refined energy estimates. Moreover, it is shown that the radiation flux q tends to zero in the L∞-norm away from the discontinuity line, at a convergence rate as the reciprocal of the Bouguer number tends to zero.
基金supported by the Natural Science Foundation of China(11001095)the Ph.D.specialized grant of the Ministry of Education of China(20100144110001)+2 种基金the Special Fund for Basic Scientific Research of Central Colleges(CCNU12C01001)supported by the Fundamental Research Funds for the Central Universities(2015IA009)the Natural Science Foundation of China(61573012)
文摘This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θx+βζxx;with initial data and end states (ζθ)(x,0)=(ζ0,θ0)(x)→(ζ±,θ±)as x→∞.We obtain the existence of traveling wave solutions by phase plane analysis and show the asymptotic nonlinear stability of traveling wave solutions without restrictions on the coeffi- cients a and v by the method of energy estimates.
基金partially supported by the NSFC(11571177)the Priority Academic Program Development of Jiangsu Higher Education Institutionspartially funded by the DFG through the Sino-German Project "Analysis of PDEs and Applications"
文摘For the 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consider a more general 2-D quasilinear wave equation (δt2-△x)u+2∑i,j=0gij(δu)δiju=0 satisfying null conditions with small initial data and the coefficients depending simultaneously on u and δu. Through construction of an approximate solution, combined with weighted energy integral method, a quasi-global or global existence solution are established by continuous induction.
文摘This paper is concerned with the nonlinear stability of planar shock profiles to the Cauchy problem of the generalized KdV-Burgers equation in two dimensions. Our analysis is based on the energy method developed by Goodman [5] for the nonlinear stability of scalar viscous shock profiles to scalar viscous conservation laws and some new decay estimates on the planar shock profiles of the generalized KdV-Burgers equation.
文摘The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.
基金supported by the Collaborative Innovation Center on Beijing Society-building and Social GovernanceNSFC(11371042)+2 种基金BNSF(1132006)the key fund of the Beijing education committee of ChinaChina Postdoctoral Science Foundation funded project
文摘This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.
基金partially supported by the ISFNSFC joint research program(11761141008)NSFC(12071044 and 12131007)the NSF of Jiangsu Province(BK20191296)。
文摘We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the uniform global existence of the solutions and the combined quasi-neutral and zero-electron-mass limit of the system are proved when the initial data are close to the constant equilibrium state.In particular,the limit is rigorously justified as the two parameters tend to zero independently.
文摘In the paper, by using the methods of compensated compactness and energy estimate, the convergence of class of fourth and sixth orders singular perturbed, partial differential equations is obtained, and furthermore, the regularity of solutions are improved.
基金Supported by National Natural Science Foundation of China(11271305)
文摘In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
基金supported by the National Natural Science Foundation of China(11871341).
文摘We consider the large time behavior of solutions of the Cauchy problem for the one-dimensional compressible Navier-Stokes equations for a reacting mixture.When the corresponding Riemann problem for the Euler system admits a contact discontinuity wave,it is shown that the viscous contact wave which corresponds to the contact discontinuity is asymptotically stable,provided the strength of contact discontinuity and the initial perturbation are suitably small.We apply the approach introduced in Huang,Li and Matsumura(2010)[1]and the elemen tary L2-energy met hods.