Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, prod...The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, production had only reached 1040 MW, leading Cameroon to devise a new national energy sector development strategy targeting 5000 MW by 2035. This paper provides an overview of the current state of energy production and projects future output by 2035. Scientific articles and investigative reports on energy production in Cameroon have enabled an assessment of the current electrical energy production. The 2035 production estimate is based on the Energy Sector Development Projects (PDSEN) report in Cameroon. The current production is estimated at around 1600 MW. Considering the ongoing construction of power plants, future projects, and financing delays, achieving the 5000 MW goal by 2035 appears challenging. Nonetheless, diversifying energy production sources could bring Cameroon closer to this target.展开更多
The results obtained from the characterization of a copper deposit on indium doped tin oxide (ITO), inked with natural dye extracted from the Lactarius indigo fungus, for use in Gratzel type solar cells are reported. ...The results obtained from the characterization of a copper deposit on indium doped tin oxide (ITO), inked with natural dye extracted from the Lactarius indigo fungus, for use in Gratzel type solar cells are reported. An electrolyte composed of 0.1 M HNO<sub>3</sub> and 0.5 M CuSO<sub>4</sub> was used, this solution was prepared for copper deposits on the ITO. Cyclic voltammetry was performed at different scan rates to obtain the reduction zone for deposition between potentials of ?100 to ?500 mV. The dye was obtained from the indigo Lactarius fungus from maceration, once the inked deposits were obtained, characterizations were performed, the initial test was to obtain the Ultraviolet-Visible (UV-visible) of the pure dye, and later the same test was performed on the inked oxide. Electrochemical Impedance Spectroscopy (EIS) was performed on the samples, as well as Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), to characterize the material properties for its application.展开更多
A sulfide driven fuel cell is proposed to clean the Black Sea with the simultaneous A sulfide driven fuel cell is proposed to clean the Black Sea with the simultaneous production of energy.The process is hopeful even ...A sulfide driven fuel cell is proposed to clean the Black Sea with the simultaneous A sulfide driven fuel cell is proposed to clean the Black Sea with the simultaneous production of energy.The process is hopeful even at low sulfide concentrations,i.e.10 to 25 mg/l being close to the ones in the Black Sea water.The main problem for the practical application of this type of fuel cell are the low current and power densities.The measurement of the generated electric current compared to the sulfide depletion show that the most probable anode reaction is oxidation of sulfide to sulfate.It is evident that parasite competitive reactions oxidation of sulfide occurs in the anode compartment of the fuel cell.The pH measurements shows that the transfer of hydroxylic anions from the cathodic compartment to the anodic one across the separating membrane is not fast enough to compensate its drop in the anode compartment.展开更多
The impact of hydro energy production,economic complexity,urbanization,technological innovation and financial development on environmental sustainability between 1995 and 2017 is examined for a panel of thirteen Asian...The impact of hydro energy production,economic complexity,urbanization,technological innovation and financial development on environmental sustainability between 1995 and 2017 is examined for a panel of thirteen Asian economies using two environmental proxies—their ecological footprint and CO_(2)emissions.The non-parametric Driscoll-Kraay standard error method and the Dumitrescu-Hurlin panel causality test are applied to the data.Our findings show that hydro energy production and technological innovation have a significant negative impact on the environment,thus promoting environmental sustainability.Economic complexity significantly lowers environmental sustainability while the non-linear effect of economic complexity favors environmental sustainability;this confirms the existence of an economic-complexity-based inverted-U-shaped environmental Kuznets curve hypothesis.Moreover,urbanization and financial development significantly decrease environmental sustainability.The results of our study confirm the feedback causality between hydro energy production and carbon dioxide emissions.We recommend expansionary policies regarding hydro energy production that are beneficial for substituting fossil fuel energy.This paves a path towards environmental sustainability in this era of global boiling.展开更多
To achieve the goals of emission peak and carbon neutrality,significant effort is invested to accelerate the energy transition,with a focus on the development and utilization of renewable energy,as well as the upgradi...To achieve the goals of emission peak and carbon neutrality,significant effort is invested to accelerate the energy transition,with a focus on the development and utilization of renewable energy,as well as the upgrading of conventional units.Within this context,this paper proposes an innovative concept,known as the integrated energy production unit(IEPU),providing a variety of energy products and flexible adjustment functions for power systems with high penetration of non-hydro renewable energy.In the IEPU framework,a photovoltaic(PV)power plant is installed to produce electricity;CO_(2) capture technology is applied to the existing coal-fired power plant with biomass co-combustion.The generated CO_(2) is used to synthesize methane or methanol with hydrogen through electrolysis.First,the operational principle and advantages of this concept are illustrated.Then,a simplified model is built to provide an optimal configuration scheme of equipment capacity.Finally,the potential contribution of IEPU to the operational flexibility of the power system is also analyzed.展开更多
The paper presents the prediction of total energy production and consumption in all provinces and autonomous regions as well as determination of the variation of gravity center of the energy production, consumption an...The paper presents the prediction of total energy production and consumption in all provinces and autonomous regions as well as determination of the variation of gravity center of the energy production, consumption and total discharge of industrial waste water, gas and residue of China via the energy and environmental quality data from 1978 to 2009 in China by use of GM(1,1) model and gravity center model, based on which the paper also analyzes the dynamic variation in regional difference in energy production, consumption and environmental quality and their relationship. The results are shown as follows. 1) The gravity center of energy production is gradually moving southwestward and the entire movement track approxi-mates to linear variation, indicating that the difference of energy production between the east and west, south and north is narrowing to a certain extent, with the difference between the east and the west narrowing faster than that between the south and the north. 2) The gravity center of energy consumption is moving southwestward with perceptible fluctuation, of which the gravity center position from 2000 to 2005 was relatively stable, with slight annual position variation, indicating that the growth rates of all provinces and autonomous regions are basically the same. 3) The gravity center of the total discharge of industrial waste water, gas and residue is characterized by fluctuation in longitude and latitude to a certain degree. But, it shows a southwestward trend on the whole. 4) There are common ground and discrepancy in the variation track of the gravity center of the energy production consumption of China, and the comparative analysis of the gravity center of them and that of total discharge of industrial waste water, gas and residue shows that the environmental quality level is closely associated with the energy production and consumption (especially the energy consumption), indicating that the environment cost in economy of energy is higher in China.展开更多
The performance of a photovoltaic(PV)installation is affected by its tilt and azimuth angles,because these parameters change the amount of solar energy absorbed by the surface of the PV modules.Therefore,this paper de...The performance of a photovoltaic(PV)installation is affected by its tilt and azimuth angles,because these parameters change the amount of solar energy absorbed by the surface of the PV modules.Therefore,this paper demonstrates the impact of the azimuth angle on the energy production of PV installations.Two different PV sites were studied,where the first comprises PV systems installed at-13°,-4°,+12°and+21°azimuth angles in different geographical locations,whereas the second PV site included adjacent PV systems installed at-87°,-32°,+2°and+17°azimuth angles.All the investigated PV sites were located in Huddersfield,UK.In summary,the results indicate that PV systems installed between-4°and+2°presented the maximum energy production over the last 4 years,while the worst energy generation were observed for the PV system installed at an azimuth angle of-87°.Finally,the probability projections for all observed azimuth angles datasets have been assessed.Since PV systems are affected by various environmental conditions such as fluctuations in the wind,humidity,solar irradiance and ambient temperature,ultimately,these factors would affect the annual energy generation of the PV installations.For that reason,we have analysed the disparities and the probability of the annual energy production for multiple PV systems installed at different azimuth angles ranging from-90°to+90°degrees,and affected by different environmental conditions.These analyses are based on the cumulative density function modelling technique as well as the normal distribution function.展开更多
This letter presents a systematic approach to estimate the annual energy production(AEP) of variable-speed wind turbines erected at high-altitude sites. Compared with the existing empirical-model based approaches, the...This letter presents a systematic approach to estimate the annual energy production(AEP) of variable-speed wind turbines erected at high-altitude sites. Compared with the existing empirical-model based approaches, the proposed approach models the influence of the air density on the power production while employing the theoretical power curve. Consequently, the proposed approach provides a precise estimation of AEP, which can serve as a foundation of the optimum turbinesite matching design at different-altitude sites.展开更多
This paper reports a field survey undertaken to determine the availability of raw material for palm kernel oil commercial production for industrial applications. Both industrial and artisanal wastes from palm kernel o...This paper reports a field survey undertaken to determine the availability of raw material for palm kernel oil commercial production for industrial applications. Both industrial and artisanal wastes from palm kernel oil production were also surveyed as raw material (palm kernel seeds) for green energy production. Results of the field study show that 22% of palm kernel seeds (which represents tons of waste) resulting from palm oil processing plants are dumped while at the artisanal level, 80% of palm kernel seed waste is dumped. Analysis of field study data show<span>s</span><span> that large amounts of waste palm kernel seeds are available to enable large scale production of palm kernel oil (PKO) for desirable industrial applications in green energy production. The paper also reports on the physical and chemical properties of Cameroon palm kernel oil (PKO). Palm kernel oil was extracted using mechanical press and solvent extraction. The palm kernel oil (PKO) from Cameroon was analyzed by standard physico-chemical methods. Results of the physical measurements show a specific gravity of PKO of 0.92 kg/L, viscosity of 26.03 cSt and at 5.93 cSt at 40<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C and 100<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C respectively, viscosity index of 185, pour point of 20<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, cloud point of 29<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, flash point of 200<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, aniline point of 105<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>F, diesel index of 23, cetane number of 27 and ASTM (American Standards for Testing and Materials) color of less than 2.5. Results of chemical analyses showed an acid val<span>ue of 17.95 mg KOH/g, free fatty <span>acid (FFA) content of 8.98 mg KOH/g, iodine value o</span></span></span><span><span><span>f 2.10</span><span> mg</span></span></span><span> </span><span><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">2</span></sub><span><span style="font-family:Verdana;">/g</span><span style="font-family:Verdana;">, peroxide value of 2.10 meq/kg, ester value of 123.0 mg KOH/g, hydroxyl value of 93.4 mg OH/g, saponification value of 140.95 mg KOH/g and a sulfur content of 0.016% w/v, signifying low sulfur content. Gas chromatography-mass spectrometry (GC-MS) showed the palm kernel oil to be predominantly made up of glycerides of various fatty acids with higher proportions of C12 to C16 fatty acid residues. Cameroon PKO therefore has a broad spectrum of industrial applications by virtue of its rich physical and chemical properties.</span></span></span>展开更多
The issue in this matter is that rules for use of electricity in rural areas are limited to the provision of inputs. Adopting guidelines to consider managed sub regions can generate poor results. The focus of this stu...The issue in this matter is that rules for use of electricity in rural areas are limited to the provision of inputs. Adopting guidelines to consider managed sub regions can generate poor results. The focus of this study was to present parameters for indicators of electric energy and agricultural production to allow the formation of city groups in Sao Paulo State, Brazil, with similar electric energy consumption and rural agricultural production. The methodology was the development of indicators that characterize the electric energy consumption/agricultural production and the preparation of groups using indicators with ward of statistical method of groups. The main conclusions were the formation of six homogeneous groups with similar characteristics regarding agricultural production/consumption of electricity. The application of these groups in cities with similar characteristics would produce more satisfactory results than the division of administrative Rural Development Offices (RDO).展开更多
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str...Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.展开更多
On July 16, 2013, the first low-E energy saving glass deep processing line of Hubei Zhongyi Glass Co., Ltd. was put into production in Changyang County of Hubei Province. Low-E glass is a kind of new glass featured wi...On July 16, 2013, the first low-E energy saving glass deep processing line of Hubei Zhongyi Glass Co., Ltd. was put into production in Changyang County of Hubei Province. Low-E glass is a kind of new glass featured with good lighting, thermal insulation, and ultraviolet radiation resistance. So far contracts worth about CNY 50 million have been signed.展开更多
The solar global radiation from 1957 to 2006 was calculated in Fushun region and its seasonal,geographical and inter-annual variation were analyzed.Moreover,relationship between yield and solar energy use efficiency o...The solar global radiation from 1957 to 2006 was calculated in Fushun region and its seasonal,geographical and inter-annual variation were analyzed.Moreover,relationship between yield and solar energy use efficiency of rice,corn and soybean were analyzed concretely.The results showed that Fushun County had the most solar global radiation in Fushun region,while Xinbin County had the least.The solar global radiation in warm season accounted for 72% of the total solar radiation in one year.The maximum solar global radiation occurred in May,while theminimum value in December,with a period of 19 years.In addition,crop yield was proportional to solar energy use efficiency.展开更多
Nitrogen(N),phosphorus(P)and potassium(K)are important essential nutrients for plant growth and development,but their functions in energy status remains unclear.Here,we grew Nipponbare rice seedlings in a growth chamb...Nitrogen(N),phosphorus(P)and potassium(K)are important essential nutrients for plant growth and development,but their functions in energy status remains unclear.Here,we grew Nipponbare rice seedlings in a growth chamber for 20 d at 30℃/24℃day/night)under natural sunlight conditions with different nutrient regimes.The results showed that N had the strongest influence on the plant growth and development,followed by P and K.The highest nonstructural carbohydrate content,dry matter weight,net photosynthetic rate(Pn),ATP content,as well as NADH dehydrogenase,cytochrome oxidase and ATPase activities were found in the plants that received sufficient N,P and K.The lowest values of these parameters were detected in the N-deficient plants.Higher dry matter accumulation was observed in the K-deficient than in the P-deficient treatments,but there was no significant difference in the ratio of respiration rate to Pn between these two treatments,suggesting that differences in energy production efficiency may have accounted for this result.This hypothesis was confirmed by higher ATP contents and activities of NADH dehydrogenase,cytochrome oxidase and ATPase in the K-deficient plants than in the P-deficient plants.We therefore inferred different abilities in energy production efficiency among N,P and K in rice seedlings,which determined rice plant growth and development.展开更多
This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capi...This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capita energy resources level with unrational energy consumption structure; (3) lower energy utilization efficiency and higher energy conservation potential; and (4) unequal distribution of energy resources. It reviews the key environmental problems related to the feature of energy production and consumption. Based on the analysis, the author furthers addresses the policy and actions needed.展开更多
Wind energy is featured by instability due to a number of factors,such as weather,season,time of the day,climatic area and so on.Furthermore,instability in the generation of wind energy brings new challenges to electr...Wind energy is featured by instability due to a number of factors,such as weather,season,time of the day,climatic area and so on.Furthermore,instability in the generation of wind energy brings new challenges to electric power grids,such as reliability,flexibility,and power quality.This transition requires a plethora of advanced techniques for accurate forecasting of wind energy.In this context,wind energy forecasting is closely tied to machine learning(ML)and deep learning(DL)as emerging technologies to create an intelligent energy management paradigm.This article attempts to address the short-term wind energy forecasting problem in Estonia using a historical wind energy generation data set.Moreover,we taxonomically delve into the state-of-the-art ML and DL algorithms for wind energy forecasting and implement different trending ML and DL algorithms for the day-ahead forecast.For the selection of model parameters,a detailed exploratory data analysis is conducted.All models are trained on a real-time Estonian wind energy generation dataset for the first time with a frequency of 1 h.The main objective of the study is to foster an efficient forecasting technique for Estonia.The comparative analysis of the results indicates that Support Vector Machine(SVM),Non-linear Autoregressive Neural Networks(NAR),and Recurrent Neural Network-Long-Term Short-Term Memory(RNNLSTM)are respectively 10%,25%,and 32%more efficient compared to TSO’s forecasting algorithm.Therefore,RNN-LSTM is the best-suited and computationally effective DL method for wind energy forecasting in Estonia and will serve as a futuristic solution.展开更多
With the world economic development, population growth and improvement of people' s living standard, the energy shortage has become the core issue of restricting the development of the world economy. China faces seri...With the world economic development, population growth and improvement of people' s living standard, the energy shortage has become the core issue of restricting the development of the world economy. China faces serious energy crisis and environmental problems, so the development of biofuels in China is vital. This paper introduces the advantages of duckweed for energy production, summarizes the research results of Chengdu Institute of Biology on duckweed, and provides the direction of its further studv.展开更多
This article developed a decomposition model of energy productivity on the basis of the economic growth model. Four factors were considered which may influence China’s energy productivity according to this model: tec...This article developed a decomposition model of energy productivity on the basis of the economic growth model. Four factors were considered which may influence China’s energy productivity according to this model: technology improvement, resource allocation structure, industrial structure and institute arrangement. Then, an econometric model was employed to test the four factors empirically on the basis of China’s statistical data from 1978 to 2004. Results indicated that capital deepening con- tributes the most (207%) to energy efficiency improvement, and impact from labor forces (13%) is the weakest one in resource factor; industrial structure (7%) and institute innovation (9.5%) positively improve the energy productivity.展开更多
The oxidation microstructure and maximum energy product (BH)max loss of a 8m(Co0.76, Fe0.1, Cu0.1, Zr0.04)7 magnet oxidized at 500 ℃ were systematically investigated. Three different oxidation regions were formed...The oxidation microstructure and maximum energy product (BH)max loss of a 8m(Co0.76, Fe0.1, Cu0.1, Zr0.04)7 magnet oxidized at 500 ℃ were systematically investigated. Three different oxidation regions were formed in the oxidized magnet: a continuous externM oxide scale, an internal reaction layer, and a diffusion zone. Both room-temperature and high-temperature (BH)max losses exhibited the same parabolic increase with oxidation time. An oxygen diffusion model was proposed to simulate the dependence of (BH)max loss on oxidation time. It is found that the external oxide scale has little effect on the (BH)max loss, and both the internal reaction layer and diffusion zone result in the (BH)max loss. Moreover, the diffusion zone leads to more (BH)max loss than the internal reaction layer. The values of the oxidation rate constant k for internal reaction layer and oxygen diffusion coefficient D for diffusion zone were obtained, which are about 1.91×10^-10 cm^2/s and 6.54×10^-11 cm^2/s, respectively.展开更多
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
文摘The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, production had only reached 1040 MW, leading Cameroon to devise a new national energy sector development strategy targeting 5000 MW by 2035. This paper provides an overview of the current state of energy production and projects future output by 2035. Scientific articles and investigative reports on energy production in Cameroon have enabled an assessment of the current electrical energy production. The 2035 production estimate is based on the Energy Sector Development Projects (PDSEN) report in Cameroon. The current production is estimated at around 1600 MW. Considering the ongoing construction of power plants, future projects, and financing delays, achieving the 5000 MW goal by 2035 appears challenging. Nonetheless, diversifying energy production sources could bring Cameroon closer to this target.
文摘The results obtained from the characterization of a copper deposit on indium doped tin oxide (ITO), inked with natural dye extracted from the Lactarius indigo fungus, for use in Gratzel type solar cells are reported. An electrolyte composed of 0.1 M HNO<sub>3</sub> and 0.5 M CuSO<sub>4</sub> was used, this solution was prepared for copper deposits on the ITO. Cyclic voltammetry was performed at different scan rates to obtain the reduction zone for deposition between potentials of ?100 to ?500 mV. The dye was obtained from the indigo Lactarius fungus from maceration, once the inked deposits were obtained, characterizations were performed, the initial test was to obtain the Ultraviolet-Visible (UV-visible) of the pure dye, and later the same test was performed on the inked oxide. Electrochemical Impedance Spectroscopy (EIS) was performed on the samples, as well as Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), to characterize the material properties for its application.
基金supported by the Fund for Scientific Research,Bulgaria,GrantЕ07/7(2017).
文摘A sulfide driven fuel cell is proposed to clean the Black Sea with the simultaneous A sulfide driven fuel cell is proposed to clean the Black Sea with the simultaneous production of energy.The process is hopeful even at low sulfide concentrations,i.e.10 to 25 mg/l being close to the ones in the Black Sea water.The main problem for the practical application of this type of fuel cell are the low current and power densities.The measurement of the generated electric current compared to the sulfide depletion show that the most probable anode reaction is oxidation of sulfide to sulfate.It is evident that parasite competitive reactions oxidation of sulfide occurs in the anode compartment of the fuel cell.The pH measurements shows that the transfer of hydroxylic anions from the cathodic compartment to the anodic one across the separating membrane is not fast enough to compensate its drop in the anode compartment.
基金Researchers Supporting Project number(RSP2024R87),King Saud University,Riyadh,Saudi Arabia.
文摘The impact of hydro energy production,economic complexity,urbanization,technological innovation and financial development on environmental sustainability between 1995 and 2017 is examined for a panel of thirteen Asian economies using two environmental proxies—their ecological footprint and CO_(2)emissions.The non-parametric Driscoll-Kraay standard error method and the Dumitrescu-Hurlin panel causality test are applied to the data.Our findings show that hydro energy production and technological innovation have a significant negative impact on the environment,thus promoting environmental sustainability.Economic complexity significantly lowers environmental sustainability while the non-linear effect of economic complexity favors environmental sustainability;this confirms the existence of an economic-complexity-based inverted-U-shaped environmental Kuznets curve hypothesis.Moreover,urbanization and financial development significantly decrease environmental sustainability.The results of our study confirm the feedback causality between hydro energy production and carbon dioxide emissions.We recommend expansionary policies regarding hydro energy production that are beneficial for substituting fossil fuel energy.This paves a path towards environmental sustainability in this era of global boiling.
基金supported by the Science and Technology Project of State Grid Corporation of China:Feasibility study on integrated energy production unit facing the goal of carbon neutrality(SGJSJY00FKJS2100121).
文摘To achieve the goals of emission peak and carbon neutrality,significant effort is invested to accelerate the energy transition,with a focus on the development and utilization of renewable energy,as well as the upgrading of conventional units.Within this context,this paper proposes an innovative concept,known as the integrated energy production unit(IEPU),providing a variety of energy products and flexible adjustment functions for power systems with high penetration of non-hydro renewable energy.In the IEPU framework,a photovoltaic(PV)power plant is installed to produce electricity;CO_(2) capture technology is applied to the existing coal-fired power plant with biomass co-combustion.The generated CO_(2) is used to synthesize methane or methanol with hydrogen through electrolysis.First,the operational principle and advantages of this concept are illustrated.Then,a simplified model is built to provide an optimal configuration scheme of equipment capacity.Finally,the potential contribution of IEPU to the operational flexibility of the power system is also analyzed.
基金National Natural Science Foundation of China,No.41071057National Natural Science Foundation of China,No.41001388 Key Research Institute of Humanities and Social Sciences under the Ministry of Education,No.2009JJD770025
文摘The paper presents the prediction of total energy production and consumption in all provinces and autonomous regions as well as determination of the variation of gravity center of the energy production, consumption and total discharge of industrial waste water, gas and residue of China via the energy and environmental quality data from 1978 to 2009 in China by use of GM(1,1) model and gravity center model, based on which the paper also analyzes the dynamic variation in regional difference in energy production, consumption and environmental quality and their relationship. The results are shown as follows. 1) The gravity center of energy production is gradually moving southwestward and the entire movement track approxi-mates to linear variation, indicating that the difference of energy production between the east and west, south and north is narrowing to a certain extent, with the difference between the east and the west narrowing faster than that between the south and the north. 2) The gravity center of energy consumption is moving southwestward with perceptible fluctuation, of which the gravity center position from 2000 to 2005 was relatively stable, with slight annual position variation, indicating that the growth rates of all provinces and autonomous regions are basically the same. 3) The gravity center of the total discharge of industrial waste water, gas and residue is characterized by fluctuation in longitude and latitude to a certain degree. But, it shows a southwestward trend on the whole. 4) There are common ground and discrepancy in the variation track of the gravity center of the energy production consumption of China, and the comparative analysis of the gravity center of them and that of total discharge of industrial waste water, gas and residue shows that the environmental quality level is closely associated with the energy production and consumption (especially the energy consumption), indicating that the environment cost in economy of energy is higher in China.
文摘The performance of a photovoltaic(PV)installation is affected by its tilt and azimuth angles,because these parameters change the amount of solar energy absorbed by the surface of the PV modules.Therefore,this paper demonstrates the impact of the azimuth angle on the energy production of PV installations.Two different PV sites were studied,where the first comprises PV systems installed at-13°,-4°,+12°and+21°azimuth angles in different geographical locations,whereas the second PV site included adjacent PV systems installed at-87°,-32°,+2°and+17°azimuth angles.All the investigated PV sites were located in Huddersfield,UK.In summary,the results indicate that PV systems installed between-4°and+2°presented the maximum energy production over the last 4 years,while the worst energy generation were observed for the PV system installed at an azimuth angle of-87°.Finally,the probability projections for all observed azimuth angles datasets have been assessed.Since PV systems are affected by various environmental conditions such as fluctuations in the wind,humidity,solar irradiance and ambient temperature,ultimately,these factors would affect the annual energy generation of the PV installations.For that reason,we have analysed the disparities and the probability of the annual energy production for multiple PV systems installed at different azimuth angles ranging from-90°to+90°degrees,and affected by different environmental conditions.These analyses are based on the cumulative density function modelling technique as well as the normal distribution function.
基金This work was supported by the National Natural Science Foundation of China(No.61803393)the Natural Science Foundation of Hunan Province(No.2020JJ4751)the Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Education(No.NRF-2016R1A6A1A03013567).
文摘This letter presents a systematic approach to estimate the annual energy production(AEP) of variable-speed wind turbines erected at high-altitude sites. Compared with the existing empirical-model based approaches, the proposed approach models the influence of the air density on the power production while employing the theoretical power curve. Consequently, the proposed approach provides a precise estimation of AEP, which can serve as a foundation of the optimum turbinesite matching design at different-altitude sites.
文摘This paper reports a field survey undertaken to determine the availability of raw material for palm kernel oil commercial production for industrial applications. Both industrial and artisanal wastes from palm kernel oil production were also surveyed as raw material (palm kernel seeds) for green energy production. Results of the field study show that 22% of palm kernel seeds (which represents tons of waste) resulting from palm oil processing plants are dumped while at the artisanal level, 80% of palm kernel seed waste is dumped. Analysis of field study data show<span>s</span><span> that large amounts of waste palm kernel seeds are available to enable large scale production of palm kernel oil (PKO) for desirable industrial applications in green energy production. The paper also reports on the physical and chemical properties of Cameroon palm kernel oil (PKO). Palm kernel oil was extracted using mechanical press and solvent extraction. The palm kernel oil (PKO) from Cameroon was analyzed by standard physico-chemical methods. Results of the physical measurements show a specific gravity of PKO of 0.92 kg/L, viscosity of 26.03 cSt and at 5.93 cSt at 40<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C and 100<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C respectively, viscosity index of 185, pour point of 20<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, cloud point of 29<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, flash point of 200<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>C, aniline point of 105<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span></span>F, diesel index of 23, cetane number of 27 and ASTM (American Standards for Testing and Materials) color of less than 2.5. Results of chemical analyses showed an acid val<span>ue of 17.95 mg KOH/g, free fatty <span>acid (FFA) content of 8.98 mg KOH/g, iodine value o</span></span></span><span><span><span>f 2.10</span><span> mg</span></span></span><span> </span><span><span style="font-family:Verdana;">I</span><sub><span style="font-family:Verdana;">2</span></sub><span><span style="font-family:Verdana;">/g</span><span style="font-family:Verdana;">, peroxide value of 2.10 meq/kg, ester value of 123.0 mg KOH/g, hydroxyl value of 93.4 mg OH/g, saponification value of 140.95 mg KOH/g and a sulfur content of 0.016% w/v, signifying low sulfur content. Gas chromatography-mass spectrometry (GC-MS) showed the palm kernel oil to be predominantly made up of glycerides of various fatty acids with higher proportions of C12 to C16 fatty acid residues. Cameroon PKO therefore has a broad spectrum of industrial applications by virtue of its rich physical and chemical properties.</span></span></span>
文摘The issue in this matter is that rules for use of electricity in rural areas are limited to the provision of inputs. Adopting guidelines to consider managed sub regions can generate poor results. The focus of this study was to present parameters for indicators of electric energy and agricultural production to allow the formation of city groups in Sao Paulo State, Brazil, with similar electric energy consumption and rural agricultural production. The methodology was the development of indicators that characterize the electric energy consumption/agricultural production and the preparation of groups using indicators with ward of statistical method of groups. The main conclusions were the formation of six homogeneous groups with similar characteristics regarding agricultural production/consumption of electricity. The application of these groups in cities with similar characteristics would produce more satisfactory results than the division of administrative Rural Development Offices (RDO).
基金Supported by the National Natural Science Foundation of China(61374166,6153303)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404,JD1413,ZY1502)
文摘Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.
文摘On July 16, 2013, the first low-E energy saving glass deep processing line of Hubei Zhongyi Glass Co., Ltd. was put into production in Changyang County of Hubei Province. Low-E glass is a kind of new glass featured with good lighting, thermal insulation, and ultraviolet radiation resistance. So far contracts worth about CNY 50 million have been signed.
基金Supported by Government of Fushun City (20071209)
文摘The solar global radiation from 1957 to 2006 was calculated in Fushun region and its seasonal,geographical and inter-annual variation were analyzed.Moreover,relationship between yield and solar energy use efficiency of rice,corn and soybean were analyzed concretely.The results showed that Fushun County had the most solar global radiation in Fushun region,while Xinbin County had the least.The solar global radiation in warm season accounted for 72% of the total solar radiation in one year.The maximum solar global radiation occurred in May,while theminimum value in December,with a period of 19 years.In addition,crop yield was proportional to solar energy use efficiency.
基金This study was supported by the Zhejiang Provincial Natural Science Foundation,China(Grant Nos.LY19C130006 and LY20C130011)the Open Project Program of State Key Laboratory of Rice Biology,China(Grant No.20190403)+1 种基金the National Rice Industry Technology System,China(Grant No.CARS-01)and the Central Public Interest Research Institute Special Fund in China(Grant No.2017RG004-1).
文摘Nitrogen(N),phosphorus(P)and potassium(K)are important essential nutrients for plant growth and development,but their functions in energy status remains unclear.Here,we grew Nipponbare rice seedlings in a growth chamber for 20 d at 30℃/24℃day/night)under natural sunlight conditions with different nutrient regimes.The results showed that N had the strongest influence on the plant growth and development,followed by P and K.The highest nonstructural carbohydrate content,dry matter weight,net photosynthetic rate(Pn),ATP content,as well as NADH dehydrogenase,cytochrome oxidase and ATPase activities were found in the plants that received sufficient N,P and K.The lowest values of these parameters were detected in the N-deficient plants.Higher dry matter accumulation was observed in the K-deficient than in the P-deficient treatments,but there was no significant difference in the ratio of respiration rate to Pn between these two treatments,suggesting that differences in energy production efficiency may have accounted for this result.This hypothesis was confirmed by higher ATP contents and activities of NADH dehydrogenase,cytochrome oxidase and ATPase in the K-deficient plants than in the P-deficient plants.We therefore inferred different abilities in energy production efficiency among N,P and K in rice seedlings,which determined rice plant growth and development.
文摘This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the co\|exist of (1) higher total energy production and lower per capita level; (2) lower per capita energy resources level with unrational energy consumption structure; (3) lower energy utilization efficiency and higher energy conservation potential; and (4) unequal distribution of energy resources. It reviews the key environmental problems related to the feature of energy production and consumption. Based on the analysis, the author furthers addresses the policy and actions needed.
基金This work was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2021-2016-0-00313)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘Wind energy is featured by instability due to a number of factors,such as weather,season,time of the day,climatic area and so on.Furthermore,instability in the generation of wind energy brings new challenges to electric power grids,such as reliability,flexibility,and power quality.This transition requires a plethora of advanced techniques for accurate forecasting of wind energy.In this context,wind energy forecasting is closely tied to machine learning(ML)and deep learning(DL)as emerging technologies to create an intelligent energy management paradigm.This article attempts to address the short-term wind energy forecasting problem in Estonia using a historical wind energy generation data set.Moreover,we taxonomically delve into the state-of-the-art ML and DL algorithms for wind energy forecasting and implement different trending ML and DL algorithms for the day-ahead forecast.For the selection of model parameters,a detailed exploratory data analysis is conducted.All models are trained on a real-time Estonian wind energy generation dataset for the first time with a frequency of 1 h.The main objective of the study is to foster an efficient forecasting technique for Estonia.The comparative analysis of the results indicates that Support Vector Machine(SVM),Non-linear Autoregressive Neural Networks(NAR),and Recurrent Neural Network-Long-Term Short-Term Memory(RNNLSTM)are respectively 10%,25%,and 32%more efficient compared to TSO’s forecasting algorithm.Therefore,RNN-LSTM is the best-suited and computationally effective DL method for wind energy forecasting in Estonia and will serve as a futuristic solution.
文摘With the world economic development, population growth and improvement of people' s living standard, the energy shortage has become the core issue of restricting the development of the world economy. China faces serious energy crisis and environmental problems, so the development of biofuels in China is vital. This paper introduces the advantages of duckweed for energy production, summarizes the research results of Chengdu Institute of Biology on duckweed, and provides the direction of its further studv.
文摘This article developed a decomposition model of energy productivity on the basis of the economic growth model. Four factors were considered which may influence China’s energy productivity according to this model: technology improvement, resource allocation structure, industrial structure and institute arrangement. Then, an econometric model was employed to test the four factors empirically on the basis of China’s statistical data from 1978 to 2004. Results indicated that capital deepening con- tributes the most (207%) to energy efficiency improvement, and impact from labor forces (13%) is the weakest one in resource factor; industrial structure (7%) and institute innovation (9.5%) positively improve the energy productivity.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2010AA03A401)the National Natural Science Foundation of China (Grant No. 51071010)+1 种基金the Aviation Foundation of China (AFC) (Grant No. 2009ZF51063)the Fundamental Research Funds for the Central Universities
文摘The oxidation microstructure and maximum energy product (BH)max loss of a 8m(Co0.76, Fe0.1, Cu0.1, Zr0.04)7 magnet oxidized at 500 ℃ were systematically investigated. Three different oxidation regions were formed in the oxidized magnet: a continuous externM oxide scale, an internal reaction layer, and a diffusion zone. Both room-temperature and high-temperature (BH)max losses exhibited the same parabolic increase with oxidation time. An oxygen diffusion model was proposed to simulate the dependence of (BH)max loss on oxidation time. It is found that the external oxide scale has little effect on the (BH)max loss, and both the internal reaction layer and diffusion zone result in the (BH)max loss. Moreover, the diffusion zone leads to more (BH)max loss than the internal reaction layer. The values of the oxidation rate constant k for internal reaction layer and oxygen diffusion coefficient D for diffusion zone were obtained, which are about 1.91×10^-10 cm^2/s and 6.54×10^-11 cm^2/s, respectively.