期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network
1
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network energy efficiency evaluation TOPSIS evaluation method energy saving and consumption reduction
下载PDF
Research on Energy Efficiency Characteristics of Mining Shovel Hoisting and Slewing System Driven by Hydraulic-Electric Hybrid System
2
作者 Xiangyu Wang Lei Ge +1 位作者 Yunhua Li Long Quan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期197-211,共15页
Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the ... Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the descent of the hoisting system or the deceleration of the slewing platform.To reduce the energy loss,an innovative hydrau-lic-electric hybrid drive system is proposed,in which a hydraulic pump/motor connected with an accumulator is added to assist the electric motor to drive the hoisting system or slewing platform,recycling kinetic and potential energy.The utilization of the kinetic and potential energy reduces the energy loss and installed power of the min-ing shovel.Meanwhile,the reliability of the mining shovel pure electric drive system also can be increased.In this paper,the hydraulic-electric hybrid driving principle is introduced,a small-scale testbed is set up to verify the feasibil-ity of the system,and a co-simulation model of the proposed system is established to clarify the system operation and energy characteristics.The test and simulation results show that,by adopting the proposed system,compared with the traditional purely electric driving system,the peak power and energy consumption of the hoisting electric motor are reduced by 36.7%and 29.7%,respectively.Similarly,the slewing electric motor experiences a significant decrease in peak power by 86.9%and a reduction in energy consumption by 59.4%.The proposed system expands the application area of the hydraulic electric hybrid drive system and provides a reference for its application in over-sized and super heavy equipment. 展开更多
关键词 Mining shovel Hoisting and slewing system Hydraulic-electric hybrid drive energy saving
下载PDF
Base Station Energy Management in 5G Networks Using Wide Range Control Optimization
3
作者 J.Premalatha A.SahayaAnselin Nisha 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期811-826,共16页
The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that deman... The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario. 展开更多
关键词 5G base station energy management energy saving traffic pattern sleep mode
下载PDF
Research on Energy-Saving Performance of Intermittent Heating for Rooms in Hot Summer&ColdWinter Zone
4
作者 Guoqing Yu Nan Fang +1 位作者 Dingke Hu Wei Zhao 《Energy Engineering》 EI 2023年第7期1563-1582,共20页
In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has n... In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%. 展开更多
关键词 Intermittent heating space heat load continuous heating hot summer&cold winter zone energy saving ratio
下载PDF
Low Carbon Building Design Optimization Based on Intelligent Energy Management System
5
作者 Zhenyi Feng NinaMo +2 位作者 ShujuanDai Yu Xiao Xia Cheng 《Energy Engineering》 EI 2023年第1期201-219,共19页
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ... The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings. 展开更多
关键词 Low carbon building design smart energy management system building structure evaluation carbon emission control energy saving control
下载PDF
Optimization of Finishing Process and Energy Savings in Denim Textile Facility
6
作者 Md. Enamul Haque Kaisul Kabir +5 位作者 Md. Asib Khan Mohammad Abu Syed Nizami Rajib Kabiraj Mohammed Fakhruddin Md. Golam Arif Md. Abu Hanif 《Journal of Textile Science and Technology》 2023年第3期151-164,共14页
Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing ope... Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing operations. So, several treatment processes, including enzymatic, bleaching, singeing, heat set, and ozone finish, are used, which made this processing more energy consumption and time-consuming. Therefore, it is significant to investigate how changing the chemicals and raw ingredients could improve the finishing process, which is environmentally and economically beneficial for sustainable production practices in the denim finishing process. This study’s research design comprises an experimental investigation in a denim plant in Bangladesh. Two different fabrics were chosen to analyze, determining the potential savings of finishing on the denim fabrics’ performance characteristics. By deducting singeing and heat-set processes, the researchers ran an experimental process by maintaining the same length of fabric. Then, the impacts of finishing process optimization on the mechanical, thermal, and comfort parameters of drape, stiffness, and tear strength were examined. The study’s findings demonstrated that this experiment increased productivity and reduced the finishing unit’s energy consumption without compromising the denim fabrics’ quality. This study significantly impacts environmental sustainability by preserving limited energy resources and manufacturing denim finishing processes. 展开更多
关键词 Finishing Process energy Savings Denim Fabrics Potential Savings Process Optimization Cotton-Elastane Fabric
下载PDF
Research on the cooperative train control method in the metro system for energy saving
7
作者 Siyao Li Bo Yuan +1 位作者 Yun Bai Jianfeng Liu 《Railway Sciences》 2023年第3期371-394,共24页
Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,... Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains. 展开更多
关键词 Train operation scheme energy saving Cooperative control Metro system
下载PDF
Research on Potential Energy Recovery System of 16T Wheeled Hybrid Excavator
8
作者 SHI Kaikai YUAN Zhonghui 《International Journal of Plant Engineering and Management》 2023年第2期113-122,共10页
The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the re... The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the recoverable energy recycling efficiently.This energy of traditional excavator is lost in the form of heat energy,which is wasteful,and makes the component's temperature higher and higher to reduce the machine's life.Research on this system not only conforms to the current topic of energy crisis,but also mates with the actual engineering,so it is significant to research that. 展开更多
关键词 hybrid excavator potential energy recove ARM energy saving
下载PDF
Experimental study and energy saving analysis of a novel radiant ceiling heating system 被引量:1
9
作者 汪峰 梁彩华 张小松 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期118-123,共6页
In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experi... In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experiments. In addition, the energy saving potential of the novel heating system is discussed in terms of the COP (coefficient of performance) of the ground source heat pump and the exergy efficiency of the radiant terminal. The results indicate that the heating system shows high thermal stability and thermal comfort. When the system reaches a stable condition, the radiant heat transfer accounts for 62.7% of the total heat transfer, and the total heat transfer can meet the heating demands of most buildings. Compared to a radiant floor heating system, it offers advantages in a shorter preheating time, a lower supply water temperature and a stronger heating capability. The COP of the ground source heat pump is increased greatly when the supply water temperature is 28 to 33 ℃, and the exergy efficiency of the metal ceiling with capillary tubes is 1.6 times that of the radiant floor when the reference temperature is 5 ℃ The novel radiant ceiling heating system shows a tremendous energy saving potential. 展开更多
关键词 radiant heating system capillary tube heatingperformance energy saving exergy efficiency
下载PDF
Active and passive modulation of solar light transmittance in a uniquely multifunctional dual-band single molecule for smart window applications
10
作者 Pooja V.Chavan Pramod V.Rathod +2 位作者 Joohyung Lee Sergei V.Kostjuk Hern Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期293-305,I0007,共14页
Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are ... Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals'quality of life.Unfortunately,dual-responsive materials have not received ample research attention due to economic and technological challenges.As a consequence,the broader utilization of smart windows faces hindrances.To address this new generational multistimulus responsive chromic materials,our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen(HV)onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity.These constructed smart windows facilitate individualistic reversible switching,from a highly transparent state to an opaque state(thermochromic)and a red state(electrochromic),as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque(thermochromic)and orange(electrochromic)states.Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance.Each unique chromic mode operates independently and modulates visible and near-infrared(NIR)light in a distinct manner.Hence,these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities,rendering them highly attractive for applications in building facades,energy harvesting,privacy protection,and color display. 展开更多
关键词 Smart windows THERMOCHROMISM ELECTROCHROMISM energy saving Dual-responsive material
下载PDF
A utility and easily fabricated dual-mode fiber film for efficient and comfortable thermal management
11
作者 Jiyuan Yu Jian Zheng +3 位作者 Wei Wang Zhijia Zhu Chunyan Hu Baojiang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期394-405,共12页
Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) fa... Nowadays, the global climate is constantly being destroyed and the fluctuations in ambient temperature are becoming more frequent. However, conventional single-mode thermal management strategies(heating or cooling) failed to resolve such dynamic temperature changes. Moreover, developing thermal management devices capable of accommodating these temperature variations while remaining simple to fabricate and durable has remained a formidable obstacle. To address these bottlenecks, we design and successfully fabricate a novel dual-mode hierarchical(DMH) composite film featuring a micronanofiber network structure, achieved through a straightforward two-step continuous electrospinning process. In cooling mode, it presents a high solar reflectivity of up to 97.7% and an excellent atmospheric transparent window(ATW) infrared emissivity of up to 98.9%. Noted that this DMH film could realize a cooling of 8.1 ℃ compared to the ambient temperature outdoors. In heating mode, it also exhibits a high solar absorptivity of 94.7% and heats up to 11.9 ℃ higher than black cotton fabric when utilized by individuals. In practical application scenarios, a seamless transition between efficient cooling and heating is achieved by simply flipping the film. More importantly, the DMH film combining the benefits of composites demonstrates portability, durability, and easy-cleaning, promising to achieve large-scale production and use of thermally managed textiles in the future. The energy savings offered by film applications provide a viable solution for the early realization of carbon neutrality. 展开更多
关键词 Micro-nanofiber film DUAL-MODE Comfortable thermal management Simplified production UTILITY energy saving
下载PDF
Energy saving analysis of a hybrid ground-coupled heat pump project
12
作者 陈九法 薛琴 +1 位作者 乔卫来 安二铭 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期177-181,共5页
A hybrid ground-coupled heat pump(HGCHP)project in Nanjing,China is chosen to analyze the building energy-consumption properties in terms of different control strategies,building envelope and the terminal air-condit... A hybrid ground-coupled heat pump(HGCHP)project in Nanjing,China is chosen to analyze the building energy-consumption properties in terms of different control strategies,building envelope and the terminal air-conditioning system.The HGCHP uses a supplemental heat rejecter to dissipate extra thermal energy to guarantee underground soil heat balance.The software EnergyPlus is employed to simulate the project and design the heat flow of the cooling tower and the borehole heat exchanger(BHE).Then two feasible control strategies for the cooling tower and the borehole heat exchanger are proposed.The energy-saving potential of the building envelope is analyzed in terms of the surface color of the wall/roof.With the same terminal system,it is found that in the cooling season the heat flow of the insulated building with black wall/roof is 1.2 times more than that with white wall/roof.With the same insulated building and gray wall/roof,it is concluded that the heat pump units for a primary air fan-coil system show an annual energy consumption increase of 44.7 GJ compared with a radiant floor system. 展开更多
关键词 hybrid ground-coupled heat pump borehole heat exchanger energy saving
下载PDF
Optimum Energy Management of the Central Air-Conditioning System in Intelligent Buildings
13
作者 郭巧 徐庆伟 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期298-301,共4页
An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system w... An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%. 展开更多
关键词 intelligent building genetic algorithms central air conditioning energy saving
下载PDF
Novel Brick Technology for Carbon Reduction Footprint in Steel Shop Linings
14
作者 Carlos PAGLIOSA Leandro ROCHA +1 位作者 Marcelo BORGES Celio CAVALCANTE 《China's Refractories》 CAS 2024年第2期16-21,共6页
Clean steel encompasses a multitude of concepts that are based on fulfilling customer requirements and can be produced in many ways depending on the existing equipment and detailed customer demands.A common feature of... Clean steel encompasses a multitude of concepts that are based on fulfilling customer requirements and can be produced in many ways depending on the existing equipment and detailed customer demands.A common feature of all clean steel production is tight process control along with continuous monitoring.To meet an increasing demand for cold-rolled(CR)steel sheets of improved mechanical properties,and to cope with the change of the annealing process from a batch-type to a continuous process,it is necessary to establish a technique for making ultralow carbon(ULC)steel with a C-concentration lower than 20 ppm for the steelmaking process associated with a major challenge to guarantee the competitiveness with observance of environmental requirements.Steel ladle lining plays an important role on the energy consumption during the production and the refractory lining design contributes to minimize thermal bath loss,carbon pick up and shell temperature.A new generation of unfired zero carbon refractories was developed with two specific approaches:(1)replacement of firing bricks reducing CO_(2) footprint and(2)replacement of carbon containing with performance increasing.Bricks can be used in working and safety linings with a unique microstructure with better heat scattering and similar thermomechanical properties.This work presents customers’performance compared to traditional products highlighting energy savings. 展开更多
关键词 steel ladle zero carbon energy saving
下载PDF
Analysis and Prospect of Waste Heat Utilization from Blast Furnace Slag Flushing
15
作者 Shenqin Zhang Junyi Qing 《Frontiers of Metallurgical Industry》 2024年第2期15-20,共6页
Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save ... Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application. 展开更多
关键词 blast furnace slag flushing waste heat utilization comprehensive cascade utilization energy saving and water-saving
下载PDF
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:24
16
作者 Tianchu Zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
下载PDF
Capacity-Power Consumption and Energy-Efficiency Evaluation of Green Wireless Networks 被引量:6
17
作者 Zhu Jinkang 《China Communications》 SCIE CSCD 2012年第2期13-21,共9页
In this paper,we discuss in detail the basic issue of green design and consider an energy efficiency function as the metric to evaluate green cellular networks.Specifically,we investigate the transmit power required f... In this paper,we discuss in detail the basic issue of green design and consider an energy efficiency function as the metric to evaluate green cellular networks.Specifically,we investigate the transmit power required for an expected transmission capacity and propose a capacity-power formula based on the energy conservation and the Shannon capacity theorem.Two novel definitions of cell interference depth and handoff dynamic model are introduced and the corresponding expression of energy efficiency function is derived.Numerical results show that the energy efficiency function is closely correlated with the transmitted/received power required and the cell radius.Our work provides a useful basis for research and evaluation on green design and technology of cellular networks. 展开更多
关键词 capacity-power formula cell interfer-ence depth handoff dynamic model energy-effi-ciency function energy saving evaluation greenwireless communications
下载PDF
Analyses of influence of residential buildings' space organization on heating energy consumption in Lhasa 被引量:7
18
作者 Li En 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期457-465,共9页
The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp... The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption 展开更多
关键词 residential building space organization heating energy consumption energy saving design
下载PDF
Study on shift schedule saving energy of automatic transmission of ground vehicles 被引量:15
19
作者 龚捷 赵丁选 +1 位作者 陈鹰 陈宁 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期878-883,共6页
To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetra... To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable. 展开更多
关键词 Ground vehicle Hydrodynamic drive Automatic transmission Shift schedule Saving energy Shift quality
下载PDF
Energy Saving Cooperative Communication over Fading Channels with Relay Selection and Power Control 被引量:7
20
作者 Wei Yifei Teng Yinglei +2 位作者 Wang Li Song Mei Man Yi 《China Communications》 SCIE CSCD 2012年第6期124-134,共11页
In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from... In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime. 展开更多
关键词 energy saving relay selection POWERCONTROL coop erative communication
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部