Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fiel...Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.展开更多
Polymeric dielectrics have wide range of applications in the field of electrical energy storage because of their light weight and easy processing. However, the state-of-the-art polymer dielectrics, such as biaxially o...Polymeric dielectrics have wide range of applications in the field of electrical energy storage because of their light weight and easy processing. However, the state-of-the-art polymer dielectrics, such as biaxially orientated polypropylene, could not meet the demand of minimization of electronic devices because of its low energy density. Recently, poly(vinylidene fluoride) (PVDF) based ferroelectric polymers have attracted considerable interests for energy storage applications because of their high permittivity and high breakdown strength. Unfortunately, the high dielectric loss and/or high remnant polarization of PVDF-based polymers seriously limits their practical applications for electrical energy storage. Since the discovery of relaxor ferroelectric behavior was firstly reported in irradiated poly(vinylidene fluoride- trifluoroethylene) (P(VDF-TrFE)) copolyrner, many strategies have been developed to enhanced the electrical energy storage capability, including copolymerization, grafting, blending and fabricating of multilayer How these methods affect the polymorphs, crystallinity, crystal size of PVDF-based polymers and the connection between these microstructures and their corresponding energy storage properties are discussed in detail.展开更多
Benefiting from the diversity and subjective design feasibility of molecular structure, flexibility,lightweight, molecular level controllability, resource renewability and relatively low cost, polymeric electrode mate...Benefiting from the diversity and subjective design feasibility of molecular structure, flexibility,lightweight, molecular level controllability, resource renewability and relatively low cost, polymeric electrode materials are promising candidates for the next generation of sustainable energy resources and have attracted extensive attention for the foreseeable large scale applications. The conductive polymers have been utilized as electrode materials in the pioneer reports, which, however, have the disadvantages of low stability, low reversibility and slope voltage due to the delocalization of charges in the whole conjugated systems. The discovery of carbonyl materials aroused the interest of organic and polymeric materials for batteries again. This review presents the recent progress in carbonyl polymeric electrode materials for lithium-ion batteries, sodium-ion batteries and magnesium-ion batteries. This comprehensive review is expected to be helpful forarousing more interest of organic materials for met展开更多
基金financially supported by the National Natural Science Foundation of China(51403126,21574080,61306018 and 21504057)Shanghai Committee of Science and Technology(15JC1490500,16JC1400703,and 17ZR1441700)+1 种基金Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201702,Fuzhou University)State Key Laboratory of Supramolecular Structure and Materials(sklssm201732,Jinlin University)
文摘Over the past decades, two-dimensional(2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.
基金support from Special Fund of the National Priority Basic Research of China (No. 2014CB239503)the National Natural Science Foundation of China (Nos. 51522703, 51477096) was acknowledged
文摘Polymeric dielectrics have wide range of applications in the field of electrical energy storage because of their light weight and easy processing. However, the state-of-the-art polymer dielectrics, such as biaxially orientated polypropylene, could not meet the demand of minimization of electronic devices because of its low energy density. Recently, poly(vinylidene fluoride) (PVDF) based ferroelectric polymers have attracted considerable interests for energy storage applications because of their high permittivity and high breakdown strength. Unfortunately, the high dielectric loss and/or high remnant polarization of PVDF-based polymers seriously limits their practical applications for electrical energy storage. Since the discovery of relaxor ferroelectric behavior was firstly reported in irradiated poly(vinylidene fluoride- trifluoroethylene) (P(VDF-TrFE)) copolyrner, many strategies have been developed to enhanced the electrical energy storage capability, including copolymerization, grafting, blending and fabricating of multilayer How these methods affect the polymorphs, crystallinity, crystal size of PVDF-based polymers and the connection between these microstructures and their corresponding energy storage properties are discussed in detail.
基金the National 1000-Talents Programthe National Natural Science Foundation of China(Nos. 51773071, 51203067, 51603063)+1 种基金Wuhan Science and Technology Bureau(No. 2017010201010141)the Fundamental Research Funds for the Central Universities(No. HUST: 2017KFYXJJ023)for financial support
文摘Benefiting from the diversity and subjective design feasibility of molecular structure, flexibility,lightweight, molecular level controllability, resource renewability and relatively low cost, polymeric electrode materials are promising candidates for the next generation of sustainable energy resources and have attracted extensive attention for the foreseeable large scale applications. The conductive polymers have been utilized as electrode materials in the pioneer reports, which, however, have the disadvantages of low stability, low reversibility and slope voltage due to the delocalization of charges in the whole conjugated systems. The discovery of carbonyl materials aroused the interest of organic and polymeric materials for batteries again. This review presents the recent progress in carbonyl polymeric electrode materials for lithium-ion batteries, sodium-ion batteries and magnesium-ion batteries. This comprehensive review is expected to be helpful forarousing more interest of organic materials for met