Long lasting blue-green-emitting Sr4Al14O25:Eu2+ phosphors were synthesized by solid-state reactions.The phosphors were investigated by X-ray diffraction(XRD) and fluorescence spectrophotometer.A pure phase of Sr4Al14...Long lasting blue-green-emitting Sr4Al14O25:Eu2+ phosphors were synthesized by solid-state reactions.The phosphors were investigated by X-ray diffraction(XRD) and fluorescence spectrophotometer.A pure phase of Sr4Al14O25:Eu2+ phosphor was obtained at 1250 °C.There are two different types of Eu emission centers in Sr4Al14O25:Eu2+ phosphor.The effects of the Eu2+ concentration and the reducing temperature on the distribution of Eu2+ among different sites were investigated.The energy transfer mechanism between...展开更多
A reactive Tb(III) complex with 2-aminobenzoic acid(2-ABAH) and acrylonitrile(AN) as ligands was synthesized.The structure of the complex was characterized by elemental analysis and Fourier transform infrared sp...A reactive Tb(III) complex with 2-aminobenzoic acid(2-ABAH) and acrylonitrile(AN) as ligands was synthesized.The structure of the complex was characterized by elemental analysis and Fourier transform infrared spectrometry(FT-IR).The results indicated that the ligands were coordinated with Tb(III) ion.Thermal gravity-derivative thermogravimetric(TG-DTG) analysis indicated that the complex kept stable up to 198 oC.Luminescence properties were investigated by UV-vis absorption spectra and fluorescence spectra.The results suggested that being excited at 361 nm,the complex exhibited characteristic emission of Tb(III) ion,revealing that the complex could be excited by 365 nm ultraviolet chip.The HOMO and LUMO,ΔE(HOMO-LUMO),molecular frontier orbital,and the singlet state and triplet energy state levels of the ligands were calculated at the B3LYP/6-31+G(d) level.The results indicated that intramolecular energy transfer mechanism followed Dexter exchange energy transfer theory.Both the calculation for excited state of ligand and energy transfer mechanism could provide the theoretical basis for the design of high luminescent materials of rare earth complexes with organic ligands.展开更多
Enhanced 2.7 μm emission is obtained in Er3+/Tma+ and Era+/Ho3+ codoped ZBYA glasses. Absorp- tion and emission spectra are tested to characterize the 2.7 μm emission properties of Era+/Tm3+ and Era+/Ho3+ do...Enhanced 2.7 μm emission is obtained in Er3+/Tma+ and Era+/Ho3+ codoped ZBYA glasses. Absorp- tion and emission spectra are tested to characterize the 2.7 μm emission properties of Era+/Tm3+ and Era+/Ho3+ doped ZBYA glasses and a reasonable energy transfer mechanism of 2.7 μm emission between Er3+ and Tm3+Ho3+) ion is proposed. Codoping of Tm3+ or Ho3+ significantly reduces the lifetime of the Era+: 4I13/2 level due to the energy transfer of Er3+:4I13/2 →Tm3+:3F4 or Er3+:4I13/2 →Ho3+: 5I7. Thus, the 2.7μm emission is strengthened and the 1,5μm emission is decreased accordingly especially in the Era+/Tma+ sample. The upconversion effects between the Er3+/Tm3+ and Er3+/Ho3+ doped ZBYA glasses are different attribute to the different energy transfer efficiencies. Both of the two codoped samples possess nearly equal large emission cross section (16.6 × 10 -21 cm-2) around 2.7 μm. The results indicate that this Er3+/Tm3+ or Er3+/Ho3+ doped ZBYA glass has potential applications in 2.7 μm laser.展开更多
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(...In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.展开更多
Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human ...Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.展开更多
Funded by the National Natural Science Foundation of China(NSFC),Ministry of Science and Technology of China,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chines...Funded by the National Natural Science Foundation of China(NSFC),Ministry of Science and Technology of China,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,led by Dr.Liu Zhenfeng(柳振峰),Dr.Zhang Xinzheng(章新政)and Dr.Li Mei(李梅)respectively,solved the structure of spinach photosystem II-LHCII supercom-展开更多
Funded by the National Natural Science Foundation of China,Chinese Ministry of Science and Technology,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Acade...Funded by the National Natural Science Foundation of China,Chinese Ministry of Science and Technology,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,namely Liu Zhenfeng’s(柳振峰),Zhang展开更多
Ho^(3+)doped ZBLAN glass with 2.0 and 2.9μm emission was prepared.In order to further improve the luminescence of Ho^(3+),halogen ions(Cl,Br,1)were introduced to reduce the maximum phonon energy and phonon state dens...Ho^(3+)doped ZBLAN glass with 2.0 and 2.9μm emission was prepared.In order to further improve the luminescence of Ho^(3+),halogen ions(Cl,Br,1)were introduced to reduce the maximum phonon energy and phonon state density of the sample.At the same time,Nd^(3+)was introduced to transfer the energy to Ho^(3+)pumped with a 793 nm laser(Nd^(3+):4 F5/2,4 F3/2→Ho^(3+):5 I6).The effect of different halogen ion on the luminescent properties of the fluoride halide glass was compared.The results show that the luminescent intensity of infrared increases with the introduction of different halogen ions.By comparison,it is found that the sample with I-has the strongest luminescence of 1064 nm,2.0μm and 2.9μm.This is consistent with the calculated J-O intensity parameters.In addition,the 2.0 and 2.9μm emission of Ho^(3+)pumped with a 450 nm laser will not disappear.A mid-infrared sample with multi-wavelength excitation and multi-wavelength emission can be obtained.Nd^(3+)/Ho^(3+)co-doped fluoride halide glasses with 1064 nm,2.0μm and 2.9μm luminescence were prepared by melt quenching method.The luminescent mechanism and the energy transfer process between the two ions of Nd^(3+)/Ho^(3+)co-doped fluoride halide glass were studied.The J-O parameters,luminescence lifetime and absorption emission cross-sectional area of Ho^(3+)and Nd^(3+)were calculated,respectively.It is found that the value ofΩ2 in the glass matrix increases with the introduction of different halogen ions,whileΩ4 andΩ6 do not change obviously in different glass compositions.This is because the environment of the crystal field around the rare earth ions changes.The crystal phase and phonon energy of the sample were analyzed by X-ray diffraction pattern and a Fourier transform infrared spectrometer,respectively.Based on the above spectra and data(phonon energy is 634.71 cm-1),it can be predicted that Nd^(3+)/Ho^(3+)co-doped fluoride halide glass is a potential mid-infrared luminescent material.展开更多
The dependence on outer light source strongly hinders clinical applications of photodynamic therapy(PDT)to the deep-seated tumor.However,the majority of documented PDT systems that function without the external light ...The dependence on outer light source strongly hinders clinical applications of photodynamic therapy(PDT)to the deep-seated tumor.However,the majority of documented PDT systems that function without the external light source rely on either the chemiluminescence resonance energy transfer(CRET)or fluorescence resonance energy transfer(FRET)mechanism,which decreases the energy transfer efficiency and reproducibility of PDT.Herein,we developed a novel single-molecule triplet photosensitizer(iodoBodipy(IBDP)-L)that can be chemiexcited to triplet excited state to generate reactive oxygen species instead of outer light irradiation.The direct bonding of phthalhydrazid moiety to iodoBodipy fluorophore evoked valid intramolecular energy transfer(IET),and once phthalhydrazid part is activated by hydrogen peroxide,the released reaction energy could excite the iodoBodipy-phthalhydrazid conjugate as a whole.Reaction product IBDP-L-COOH showed high triplet state quantum yield(ΦT=65%)and large spin-orbit coupling.A large amount of reactive oxygen species(ROS)was produced in MCF-7 cells,thus inhibiting the cell growth both in vitro and in vivo after IBDP-L was formulated into nanoparticles(NPs)via nanoprecipitation.We believe that the synthesized IodoBodipy-phthalhydrazid conjugate based on the IET mechanism will open a new door in the molecular design of efficient triplet photosensitizers for treating deeply seated tumors in the future.展开更多
基金supported by the National Natural Science Foundation of China (60477034)
文摘Long lasting blue-green-emitting Sr4Al14O25:Eu2+ phosphors were synthesized by solid-state reactions.The phosphors were investigated by X-ray diffraction(XRD) and fluorescence spectrophotometer.A pure phase of Sr4Al14O25:Eu2+ phosphor was obtained at 1250 °C.There are two different types of Eu emission centers in Sr4Al14O25:Eu2+ phosphor.The effects of the Eu2+ concentration and the reducing temperature on the distribution of Eu2+ among different sites were investigated.The energy transfer mechanism between...
基金Project supported by the Program for Changjiang Scholar and Innovative Research Team in University (IRT0972)the International Cooperation Program of Shanxi Province (2009081046)the Postgraduate Innovation Program of Shanxi Province (20103023)
文摘A reactive Tb(III) complex with 2-aminobenzoic acid(2-ABAH) and acrylonitrile(AN) as ligands was synthesized.The structure of the complex was characterized by elemental analysis and Fourier transform infrared spectrometry(FT-IR).The results indicated that the ligands were coordinated with Tb(III) ion.Thermal gravity-derivative thermogravimetric(TG-DTG) analysis indicated that the complex kept stable up to 198 oC.Luminescence properties were investigated by UV-vis absorption spectra and fluorescence spectra.The results suggested that being excited at 361 nm,the complex exhibited characteristic emission of Tb(III) ion,revealing that the complex could be excited by 365 nm ultraviolet chip.The HOMO and LUMO,ΔE(HOMO-LUMO),molecular frontier orbital,and the singlet state and triplet energy state levels of the ligands were calculated at the B3LYP/6-31+G(d) level.The results indicated that intramolecular energy transfer mechanism followed Dexter exchange energy transfer theory.Both the calculation for excited state of ligand and energy transfer mechanism could provide the theoretical basis for the design of high luminescent materials of rare earth complexes with organic ligands.
基金supported by the National Natural Science Foundation of China under Gramt No.51172252
文摘Enhanced 2.7 μm emission is obtained in Er3+/Tma+ and Era+/Ho3+ codoped ZBYA glasses. Absorp- tion and emission spectra are tested to characterize the 2.7 μm emission properties of Era+/Tm3+ and Era+/Ho3+ doped ZBYA glasses and a reasonable energy transfer mechanism of 2.7 μm emission between Er3+ and Tm3+Ho3+) ion is proposed. Codoping of Tm3+ or Ho3+ significantly reduces the lifetime of the Era+: 4I13/2 level due to the energy transfer of Er3+:4I13/2 →Tm3+:3F4 or Er3+:4I13/2 →Ho3+: 5I7. Thus, the 2.7μm emission is strengthened and the 1,5μm emission is decreased accordingly especially in the Era+/Tma+ sample. The upconversion effects between the Er3+/Tm3+ and Er3+/Ho3+ doped ZBYA glasses are different attribute to the different energy transfer efficiencies. Both of the two codoped samples possess nearly equal large emission cross section (16.6 × 10 -21 cm-2) around 2.7 μm. The results indicate that this Er3+/Tm3+ or Er3+/Ho3+ doped ZBYA glass has potential applications in 2.7 μm laser.
文摘In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG.
文摘Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.
文摘Funded by the National Natural Science Foundation of China(NSFC),Ministry of Science and Technology of China,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,led by Dr.Liu Zhenfeng(柳振峰),Dr.Zhang Xinzheng(章新政)and Dr.Li Mei(李梅)respectively,solved the structure of spinach photosystem II-LHCII supercom-
文摘Funded by the National Natural Science Foundation of China,Chinese Ministry of Science and Technology,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,namely Liu Zhenfeng’s(柳振峰),Zhang
基金Project supported by the National Key Foundation for Exploring Scientific Instrument of China(2014YQ120351)National Natural Science Foundation of China(11504266,51702235,51871167)the Natural Science Foundation of Tianjin,China(17JCQNJC02300,18JCYBJC86200)。
文摘Ho^(3+)doped ZBLAN glass with 2.0 and 2.9μm emission was prepared.In order to further improve the luminescence of Ho^(3+),halogen ions(Cl,Br,1)were introduced to reduce the maximum phonon energy and phonon state density of the sample.At the same time,Nd^(3+)was introduced to transfer the energy to Ho^(3+)pumped with a 793 nm laser(Nd^(3+):4 F5/2,4 F3/2→Ho^(3+):5 I6).The effect of different halogen ion on the luminescent properties of the fluoride halide glass was compared.The results show that the luminescent intensity of infrared increases with the introduction of different halogen ions.By comparison,it is found that the sample with I-has the strongest luminescence of 1064 nm,2.0μm and 2.9μm.This is consistent with the calculated J-O intensity parameters.In addition,the 2.0 and 2.9μm emission of Ho^(3+)pumped with a 450 nm laser will not disappear.A mid-infrared sample with multi-wavelength excitation and multi-wavelength emission can be obtained.Nd^(3+)/Ho^(3+)co-doped fluoride halide glasses with 1064 nm,2.0μm and 2.9μm luminescence were prepared by melt quenching method.The luminescent mechanism and the energy transfer process between the two ions of Nd^(3+)/Ho^(3+)co-doped fluoride halide glass were studied.The J-O parameters,luminescence lifetime and absorption emission cross-sectional area of Ho^(3+)and Nd^(3+)were calculated,respectively.It is found that the value ofΩ2 in the glass matrix increases with the introduction of different halogen ions,whileΩ4 andΩ6 do not change obviously in different glass compositions.This is because the environment of the crystal field around the rare earth ions changes.The crystal phase and phonon energy of the sample were analyzed by X-ray diffraction pattern and a Fourier transform infrared spectrometer,respectively.Based on the above spectra and data(phonon energy is 634.71 cm-1),it can be predicted that Nd^(3+)/Ho^(3+)co-doped fluoride halide glass is a potential mid-infrared luminescent material.
基金the National Natural Science Foundation of China(No.21925802)the Fundamental Research Fundamental Funds for the Central Universities(No.DUT22LAB601)+2 种基金Basic Research Fund for Free Exploration(No.2021Szvup019)NSFC-Liaoning United Fund(No.U1908202)All animal procedures were performed in accordance with the guidelines for Care and Use of Laboratory Animals of Dalian Medical University,and approved by the Dalian University of Technology Animal Care and Use Committee(No.DUT20230428).
文摘The dependence on outer light source strongly hinders clinical applications of photodynamic therapy(PDT)to the deep-seated tumor.However,the majority of documented PDT systems that function without the external light source rely on either the chemiluminescence resonance energy transfer(CRET)or fluorescence resonance energy transfer(FRET)mechanism,which decreases the energy transfer efficiency and reproducibility of PDT.Herein,we developed a novel single-molecule triplet photosensitizer(iodoBodipy(IBDP)-L)that can be chemiexcited to triplet excited state to generate reactive oxygen species instead of outer light irradiation.The direct bonding of phthalhydrazid moiety to iodoBodipy fluorophore evoked valid intramolecular energy transfer(IET),and once phthalhydrazid part is activated by hydrogen peroxide,the released reaction energy could excite the iodoBodipy-phthalhydrazid conjugate as a whole.Reaction product IBDP-L-COOH showed high triplet state quantum yield(ΦT=65%)and large spin-orbit coupling.A large amount of reactive oxygen species(ROS)was produced in MCF-7 cells,thus inhibiting the cell growth both in vitro and in vivo after IBDP-L was formulated into nanoparticles(NPs)via nanoprecipitation.We believe that the synthesized IodoBodipy-phthalhydrazid conjugate based on the IET mechanism will open a new door in the molecular design of efficient triplet photosensitizers for treating deeply seated tumors in the future.