A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h...A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.展开更多
A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The ...A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.展开更多
The Tb 3+ ion was introduced in the Tb x Eu 1- x (BSA) 3phen as a bridge to make the energy transfer process from ligand to the Eu 3+ complex more efficient. The characteristics of the device use...The Tb 3+ ion was introduced in the Tb x Eu 1- x (BSA) 3phen as a bridge to make the energy transfer process from ligand to the Eu 3+ complex more efficient. The characteristics of the device used Tb x Eu 1- x (BSA) 3phen as the emission material with the different ratio of x were discussed. When x is 0.5, the device emits pure red color with the maximal brightness of 100 cd·m -2 and has good commutation property. The role of the Tb 3+ ion in the energy transfer process between the ligand and the Eu 3+ ion and the mechanism of energy transfer process were also discussed.展开更多
We synthesize Tm3+/Tb3+/Eu3+ triply-doped ZrF4-BaF2-LaF3-A1F3-NaF (ZBLAN) transparent glass by using a melt-quenching method. Under excitation of 365 nm, the white emission with Commission internationale deL'Ecl...We synthesize Tm3+/Tb3+/Eu3+ triply-doped ZrF4-BaF2-LaF3-A1F3-NaF (ZBLAN) transparent glass by using a melt-quenching method. Under excitation of 365 nm, the white emission with Commission internationale deL'Eclairage (CIE) coordinates of (0.33, 0.33) is achieved at the Eu3+ concentration of 1.1 mol%. The mechanisms for white emission and the energy transfer process of Tb3+→ Eu3+ are discussed in terms of the photoluminescence, photoluminescence excitation spectra, and the light emission decay curves. The nature for the Tb3+ → Eu3+ energy transfer is described with the aid of an energy level diagram.展开更多
By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and flu...By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and fluorescence decay curves were used to explore the crystal structure and optical performance of the obtained samples.When excited by 362 nm light,the cool white emission was realized by Na_(5)Y_(9)F_(32)single crystal triply-doped with 0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/0.8 mol%Eu^(3+),in which the Commission Internationale de l’Eclairage(CIE)chromaticity coordinate was(0.2995,0.3298)and the correlated color temperature(CCT)was 6586 K.The integrated normalized emission intensity of the tridoped single crystal at 448 K could keep 62%of that at 298 K.The internal quantum yield(QY)was calculated to be~15.16%by integrating spheres.These results suggested that the single crystals tri-doped with Tm^(3+),Tb^(3+)and Eu^(3+)ions have a promising potential application for white light-emitting diodes(w-LEDs).展开更多
The construction of N-fused polycyclic compounds at room temperature via the combination of transition-metal catalyst and photocatalyst has been reported.This novel work has successfully realized LED irradiated C—H a...The construction of N-fused polycyclic compounds at room temperature via the combination of transition-metal catalyst and photocatalyst has been reported.This novel work has successfully realized LED irradiated C—H activation of iodonium ylides.The strategy shows wide substrate scope and ideal functional group tolerance.Our work would be useful for the construction of various heterocyclic compounds.展开更多
The spectroscopic properties of a series of Dy^(3+)single-doped and Dy^(3+)/Nd^(3+),Dy^(3+)/Tb^(3+),and Dy^(3+)/Tm^(3+)co-doped YAlO_(3)(yttrium aluminum perovskite,YAP)phosphors were investigated and compared through...The spectroscopic properties of a series of Dy^(3+)single-doped and Dy^(3+)/Nd^(3+),Dy^(3+)/Tb^(3+),and Dy^(3+)/Tm^(3+)co-doped YAlO_(3)(yttrium aluminum perovskite,YAP)phosphors were investigated and compared through the measurements of optical absorption,emission spectra,and fluorescence decay curves.For the Dy^(3+)ion single-doped samples,the intensity of each absorption band increases with an increment in Dy^(3+)ion doping concentration,and the identified strong absorption peak at 447 nm indicates that Dy^(3+):YAP phosphors are suitable to be pumped by a blue laser diode(LD).For all co-doped samples,absorption peaks of Dy^(3+)ion along with some of the absorption bands of Nd^(3+),Tb^(3+),and Tm^(3+)ions are observed.Under 351 and 447 nm excitation,a prominent emission peak at 572 nm was obtained in all the samples,corresponding to Dy^(3+):^(4)F_(9/2)→^(6)H_(13/2)transition.Here,2 at%Dy^(3+):YAP phosphor exhibits the highest yellow emission intensity under 447 nm pumping.Among the three kinds of Dy^(3+)co-doped phosphors,Dy^(3+)/Tb^(3+):YAP phosphor possesses the dominant yellow emission.The fluorescence decay curves show exponential behaviour and are fitted well.The Commission International de L’Eclairage(CIE)chromaticity coordinates were calculated following the respective emission spectra,and it is found that all the coordinates locate in the yellow region.The energy transfer(ET)processes were investigated and the concentration quenching mechanism was discussed.The obtained results suggest that Dy^(3+)-activated YAP phosphors are good candidates for yellow LED applications.展开更多
Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the...Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the longer wavelength region,and the spectral origin were discussed.The emission spectra were measured in two different exciting ways,i.e.,exciting the VO 4 group at 270 nm and the Eu 3+ ion at 398 nm,respectively,and the energy transferring process was reasonably suggested.Furthermore,multi-color emission could be achieved in Sr 2.5 Dy 1/3-x Eu x V 2 O 8,indicating that the studied samples had potential applications in the white light emitting diodes.Further investigation showed that reducing the concentration of Eu 3+ and Dy 3+ and introducing Bi 3+ as a sensitizer ion greatly enhanced the emission intensity.展开更多
基金supported by the Natural Science Foundation of China(22075043,21875034,61704093)。
文摘A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.
基金Supported by the National Natural Science Foundation of China(21406124)
文摘A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.
文摘The Tb 3+ ion was introduced in the Tb x Eu 1- x (BSA) 3phen as a bridge to make the energy transfer process from ligand to the Eu 3+ complex more efficient. The characteristics of the device used Tb x Eu 1- x (BSA) 3phen as the emission material with the different ratio of x were discussed. When x is 0.5, the device emits pure red color with the maximal brightness of 100 cd·m -2 and has good commutation property. The role of the Tb 3+ ion in the energy transfer process between the ligand and the Eu 3+ ion and the mechanism of energy transfer process were also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.10904109,60977035,and 60907021)the Natural Science Foundation of Tianjin City,China(Grant Nos.10SYSYJC28100 and 11JCYBJC00300)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘We synthesize Tm3+/Tb3+/Eu3+ triply-doped ZrF4-BaF2-LaF3-A1F3-NaF (ZBLAN) transparent glass by using a melt-quenching method. Under excitation of 365 nm, the white emission with Commission internationale deL'Eclairage (CIE) coordinates of (0.33, 0.33) is achieved at the Eu3+ concentration of 1.1 mol%. The mechanisms for white emission and the energy transfer process of Tb3+→ Eu3+ are discussed in terms of the photoluminescence, photoluminescence excitation spectra, and the light emission decay curves. The nature for the Tb3+ → Eu3+ energy transfer is described with the aid of an energy level diagram.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275133)the Natural Science Foundation of Zhejiang Province of China(Grant No.LY22E020002)+1 种基金the Natural Science Foundation of Ningbo(Grant Nos.2021J077 and 202003N4099)K.C.Wong Magna Fund in Ningbo University
文摘By using an improved Bridgman method,0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/y mol%Eu^(3+)(y=0,0.4,0.6,0.8)doped Na_(5)Y_(9)F_(32)single crystals were prepared.The x-ray diffraction,excitation spectra,emission spectra and fluorescence decay curves were used to explore the crystal structure and optical performance of the obtained samples.When excited by 362 nm light,the cool white emission was realized by Na_(5)Y_(9)F_(32)single crystal triply-doped with 0.3 mol%Tm^(3+)/0.6 mol%Tb^(3+)/0.8 mol%Eu^(3+),in which the Commission Internationale de l’Eclairage(CIE)chromaticity coordinate was(0.2995,0.3298)and the correlated color temperature(CCT)was 6586 K.The integrated normalized emission intensity of the tridoped single crystal at 448 K could keep 62%of that at 298 K.The internal quantum yield(QY)was calculated to be~15.16%by integrating spheres.These results suggested that the single crystals tri-doped with Tm^(3+),Tb^(3+)and Eu^(3+)ions have a promising potential application for white light-emitting diodes(w-LEDs).
基金the support from Sichuan Science and Technology Program(No.2020YJ0221).
文摘The construction of N-fused polycyclic compounds at room temperature via the combination of transition-metal catalyst and photocatalyst has been reported.This novel work has successfully realized LED irradiated C—H activation of iodonium ylides.The strategy shows wide substrate scope and ideal functional group tolerance.Our work would be useful for the construction of various heterocyclic compounds.
基金Projects supported by the National Natural Science Foundation of China(51872286,51832007,51472240,61675204)Science and Technology Plan Leading Project of Fujian Province(2018H0046)+3 种基金State Key Laboratory of Rare Earth Resource Utilization(RERU2018004,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences)the National Key Research and Development Program of China(2016YFB0701002)the fund of the State Key Laboratory of Solidification Processing(SKLSP201908,Northwestern Polytechnical University)Natural Science Foundation of Jiangxi Province(20181BAB211009)。
文摘The spectroscopic properties of a series of Dy^(3+)single-doped and Dy^(3+)/Nd^(3+),Dy^(3+)/Tb^(3+),and Dy^(3+)/Tm^(3+)co-doped YAlO_(3)(yttrium aluminum perovskite,YAP)phosphors were investigated and compared through the measurements of optical absorption,emission spectra,and fluorescence decay curves.For the Dy^(3+)ion single-doped samples,the intensity of each absorption band increases with an increment in Dy^(3+)ion doping concentration,and the identified strong absorption peak at 447 nm indicates that Dy^(3+):YAP phosphors are suitable to be pumped by a blue laser diode(LD).For all co-doped samples,absorption peaks of Dy^(3+)ion along with some of the absorption bands of Nd^(3+),Tb^(3+),and Tm^(3+)ions are observed.Under 351 and 447 nm excitation,a prominent emission peak at 572 nm was obtained in all the samples,corresponding to Dy^(3+):^(4)F_(9/2)→^(6)H_(13/2)transition.Here,2 at%Dy^(3+):YAP phosphor exhibits the highest yellow emission intensity under 447 nm pumping.Among the three kinds of Dy^(3+)co-doped phosphors,Dy^(3+)/Tb^(3+):YAP phosphor possesses the dominant yellow emission.The fluorescence decay curves show exponential behaviour and are fitted well.The Commission International de L’Eclairage(CIE)chromaticity coordinates were calculated following the respective emission spectra,and it is found that all the coordinates locate in the yellow region.The energy transfer(ET)processes were investigated and the concentration quenching mechanism was discussed.The obtained results suggest that Dy^(3+)-activated YAP phosphors are good candidates for yellow LED applications.
基金supported by National Natural Science Foundation of China (11174004)Higher Educational Natural Science Foundation of Anhui Province (KJ2010A012)
文摘Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the longer wavelength region,and the spectral origin were discussed.The emission spectra were measured in two different exciting ways,i.e.,exciting the VO 4 group at 270 nm and the Eu 3+ ion at 398 nm,respectively,and the energy transferring process was reasonably suggested.Furthermore,multi-color emission could be achieved in Sr 2.5 Dy 1/3-x Eu x V 2 O 8,indicating that the studied samples had potential applications in the white light emitting diodes.Further investigation showed that reducing the concentration of Eu 3+ and Dy 3+ and introducing Bi 3+ as a sensitizer ion greatly enhanced the emission intensity.