Food,energy and water(FEW)are indispensable,irreplaceable and safeguarding resources with tangled interlinkages among each other,often framed in terms of‘nexus’.Cities have become the bustling hubs of resource consu...Food,energy and water(FEW)are indispensable,irreplaceable and safeguarding resources with tangled interlinkages among each other,often framed in terms of‘nexus’.Cities have become the bustling hubs of resource consumption and production,facing the most intense stress.Globally,food security,fresh water shortage and fossil energy exhaustion have become the greatest challenge for the sustainable development of cities in the future.Systematic analysis and simulation of dynamic evolution of urban FEW demand and supply and its nexus would add significant and practical value for macro-management such as ensuring the security of urban resource.Taking Beijing as the case study,we established a dynamic model for the FEW demand and supply from the perspective of cross-ectoral and cross-regional nexus with the Stella modelling platform,then it was run for simulating the dynamic changes and nexus characteristics of FEW during the interval between 2016 and 2035.The results showed that:①The gap between local production and demand of these three resources in Beijing will continue to increase.In 2035,Beijing will need 2.16 million tons of grain,0.83 million tons of meat,4.6 billion m3 of water and 91.65 million tons of standard coal of energy while the resources produced and supplied by locality independently will be 0.21 million tons,0.23 million tons,3.3 billion cubic meters and 16.5 million tons of standard coal respectively.Beijing has to draw on cross-boundary production to meet FEW-use with the increasing gap between local supply and demand.②There is a developing trend of the absolute quantity of interaction among FEW.Structurally,the‘outsourcing’feature is obvious and the indigenous nexus links of three resources are shifting to back-end supply chain such as transportation and treatment.③The change of nexus indexes are mainly affected by the mutual and strong dependence between food and water.Food and energy depend more and more on each other;in contrast,the inter-relationship between water and energy is more stable.In addition,inter-regional FEW nexus is strengthened.④To improve systematic management of urban resources,we need to capture multi-tradeoffs of the FEW system comprehensively and establish a multi-regional and multi-factor integrated and collaborative resource management mechanism.展开更多
This paper investigates a novel engineering problem,i.e.,security-constrained multi-period operation of micro energywater nexuses.This problem is computationally challenging because of its high nonlinearity,nonconvexi...This paper investigates a novel engineering problem,i.e.,security-constrained multi-period operation of micro energywater nexuses.This problem is computationally challenging because of its high nonlinearity,nonconvexity,and large dimension.We propose a two-stage iterative algorithm employing a hybrid physics and data-driven contingency filtering(CF)method and convexification to solve it.The convexified master problem is solved in the first stage by considering the base case operation and binding contingencies set(BCS).The second stage updates BCS using physics-based data-driven methods,which include dynamic and filtered data sets.This method is faster than existing CF methods because it relies on offline optimization problems and contains a limited number of online optimization problems.We validate effectiveness of the proposed method using two different case studies:the IEEE 13-bus power system with the EPANET 8-node water system and the IEEE 33-bus power system with the Otsfeld 13-node water system.展开更多
Modeling the interactions of water and energy systems is important to the enforcement of infrastructure security and system sustainabil-ity.To this end,recent technological advancement has allowed the production of la...Modeling the interactions of water and energy systems is important to the enforcement of infrastructure security and system sustainabil-ity.To this end,recent technological advancement has allowed the production of large volumes of data associated with functioning of these sectors.We are beginning to see that statistical and machine learning techniques can help elucidate characteristic patterns across these systems from water availability,transport,and use to energy generation,fuel supply,and customer demand,and in the interde-pendencies among these systems that can leave these systems vul-nerable to cascading impacts from single disruptions.In this paper,we discuss ways in which data and machine learning can be applied to the challenges facing the energy-water nexus along with the potential issues associated with the machine learning techniques themselves.We then survey machine learning techniques that have found application to date in energy-water nexus problems.We con-clude by outlining future research directions and opportunities for collaboration among the energy-water nexus and machine learning communities that can lead to mutual synergistic advantage.展开更多
The energy-water nexus,or the dependence of energy on water and water on energy,continues to receive attention as impacts on both energy and water supply and demand from growing popula-tions and climate-related stress...The energy-water nexus,or the dependence of energy on water and water on energy,continues to receive attention as impacts on both energy and water supply and demand from growing popula-tions and climate-related stresses are evaluated for future infra-structure planning.Changes in water and energy demand are related to changes in regional temperature,and precipitation extremes can affect water resources available for energy genera-tion for those regional populations.Additionally,the vulnerabilities to the energy and water nexus are beyond the physical infrastruc-tures themselves and extend into supporting and interdependent infrastructures.Evaluation of these vulnerabilities relies on the integration of the disparate and distributed data associated with each of the infrastructures,environments and populations served,and robust analytical methodologies of the data.A capability for the deployment of these methods on relevant data from multiple components on a single platform can provide actionable informa-tion for interested communities,not only for individual energy and water systems,but also for the system of systems that they com-prise.Here,we survey the highest priority data needs and analy-tical methods for inclusion on such a platform.展开更多
This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa re...This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .展开更多
Given the challenges facing most humanitarian operations worldwide, a change of approach is needed to ensure greater sustainability of humanitarian settlements right from the planning stage. Some studies attribute uns...Given the challenges facing most humanitarian operations worldwide, a change of approach is needed to ensure greater sustainability of humanitarian settlements right from the planning stage. Some studies attribute unsustainability to inadequate provision of basic resources and highlight the apparent bottlenecks that prevent access to the meaningful data needed to plan and remedy problems. Most operations have relied on an “ad hoc ism” approach, employing parallel and disconnected data processing methods, resulting in a wide range of data being collected without subsequent prioritization to optimize interconnections that could enhance performance. There have been little efforts to study the trade-offs potentially at stake. This work proposes a new framework enabling all subsystems to operate in a single system and focusing on data processing perspective. To achieve this, this paper proposes a Triple Nexus Framework as an attempt to integrate water, energy, and housing sector data derived from a specific sub-system within the overall system in the application of Model-Based Systems Engineering. Understanding the synergies between water, energy, and housing, Systems Engineering characterizes the triple nexus framework and identifies opportunities for improved decision-making in processing operational data from these sectors. Two scenarios illustrate how an integrated platform could be a gateway to access meaningful operational data in the system and a starting point for modeling integrated human settlement systems. Upon execution, the model is tested for nexus megadata processing, and the optimization simulation yielded 67% satisfactory results, demonstrating that an integrated system could improve sustainability, and that capacity building in service delivery is more than beneficial.展开更多
This paper presents a quantitative assessment framework of the Water, Energy and Food (W-E-F) nexus. The proposed approach allows integrated quantitative assessments by considering all the W-E-F intersectoral linkages...This paper presents a quantitative assessment framework of the Water, Energy and Food (W-E-F) nexus. The proposed approach allows integrated quantitative assessments by considering all the W-E-F intersectoral linkages and the competing demand for W-E-F resources to evaluate future development scenarios. Firstly, the conceptual model adopted for the proposed framework is presented. Secondly, a detailed methodological framework is introduced to serve as W-E-F nexus evaluation and planning platform. At the practical level, the model is applied to evaluate the W-E-F nexus in Lebanon. Finally, the conclusions and further developments are presented.展开更多
Stem cell fate determination is one of the central questions in stem cell biology,and although its regulation has been studied at genomic and proteomic levels,a variety of biological activities in cells occur at the m...Stem cell fate determination is one of the central questions in stem cell biology,and although its regulation has been studied at genomic and proteomic levels,a variety of biological activities in cells occur at the metabolic level.Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination.While metabolism is considered to play a biological regulatory role as an energy source,recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms,including histone modification,DNA methylation,and microRNAs.Additionally,the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription.The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites.In the present review,we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination,and discuss the potential preventive and therapeutic strategies via targeting metabolites.展开更多
Water, Energy and Food (WEF) nexus systems are developed to model and analyze interactions across and between WEF sectors. WEF nexus simulation models permit evaluating the direct and indirect WEF quantitative interac...Water, Energy and Food (WEF) nexus systems are developed to model and analyze interactions across and between WEF sectors. WEF nexus simulation models permit evaluating the direct and indirect WEF quantitative interaction effects in response to change of technology and/or demand. Optimization models can help to find the optimal combinations of WEF nexus system policy options and parameters that lead to the best performance of the system. This paper describes a framework for integrating quantitative WEF nexus simulation model (the Q-Nexus Model) with an optimization tool, which will give policy makers the ability to compromise best policy options based on WEF nexus simulator. The developed method is then applied to the numerical experiment and the results are discussed. Lastly, the conclusions and further developments are presented.展开更多
The quantitative assessment framework of the water, energy and food (WEF) nexus proposed by [1] permits the analysis of the WEF as an interconnected system of resources that directly and indirectly affect one another....The quantitative assessment framework of the water, energy and food (WEF) nexus proposed by [1] permits the analysis of the WEF as an interconnected system of resources that directly and indirectly affect one another. The model performs simulation of policy options and scenarios that respond to quantitative variations of the use of WEF resources. One of the key outcomes of the mathematical formulation of the model is the WEF nexus intersectoral technology matrix. In order to take advantages and analyzing policy options of adopting high efficient intersectoral use technologies, WEF intersectoral use intensities and intersectoral allocation coefficients are introduced to the technology matrix of the nexus model proposed in [1]. The developed method is then applied to evaluate the WEF nexus case study of Lebanon. Lastly, the conclusions and further developments are presented.展开更多
The Urban Nexus system creates another risk characteristic of resource metabolism. Urban metabolism has complex effects from multi-levels and multi-sectors resulted from the changes socio-economic. It is crucial to im...The Urban Nexus system creates another risk characteristic of resource metabolism. Urban metabolism has complex effects from multi-levels and multi-sectors resulted from the changes socio-economic. It is crucial to implement effective urban governance;in particular, resource metabolism creates a new nexus risk by dramatic growth in urban areas. The resource metabolism associates with water, energy, and food consumption on an urban scale that drives the intensity in resource metabolism. Therefore, this study estimates the FEW intensity of the nexus and demand side in material flow analysis by organizing into four categories of resource metabolism, including supply side, process side, demand side, and final sink. This research compares different characteristics for a small island dominated by tourism and a multi-sector city dominated by increasing economic activity. The resource intensity on the demand side and resource service systems are evaluated to identify the nexus intensity and risk for FEW nexus at the urban scale. This study determines that constraints for resource service systems are complex, and suggests that resource consumption intensity is higher in that particular nexus and demand sector. To avoid excessive loads on resource metabolism, sustainable resource management should implement trade-off strategies after analyzing the resource metabolism for urban nexus.展开更多
在本文上篇完成以后,围绕着iPhone发生了两件大事。一是苹果正式发布了iPhone OS 4,增加了多任务能力;二是下一代iPhone被意外曝光,除了造型变化外,硬件规格大有赶超Nexus One之势。这也意味着,iPhone和Android手机的较量将更多...在本文上篇完成以后,围绕着iPhone发生了两件大事。一是苹果正式发布了iPhone OS 4,增加了多任务能力;二是下一代iPhone被意外曝光,除了造型变化外,硬件规格大有赶超Nexus One之势。这也意味着,iPhone和Android手机的较量将更多取决于综合实力。展开更多
基金This work was supported by the Funds for National Science and Technology Major Project of the Ministry of Science and Technology of China[Grant number.2017YFC0505703]National Natural Science Foundation of China[Grant number.52070022]Sino Italian Cooperation of China Natural Science Foundation[Grant number.71861137001].
文摘Food,energy and water(FEW)are indispensable,irreplaceable and safeguarding resources with tangled interlinkages among each other,often framed in terms of‘nexus’.Cities have become the bustling hubs of resource consumption and production,facing the most intense stress.Globally,food security,fresh water shortage and fossil energy exhaustion have become the greatest challenge for the sustainable development of cities in the future.Systematic analysis and simulation of dynamic evolution of urban FEW demand and supply and its nexus would add significant and practical value for macro-management such as ensuring the security of urban resource.Taking Beijing as the case study,we established a dynamic model for the FEW demand and supply from the perspective of cross-ectoral and cross-regional nexus with the Stella modelling platform,then it was run for simulating the dynamic changes and nexus characteristics of FEW during the interval between 2016 and 2035.The results showed that:①The gap between local production and demand of these three resources in Beijing will continue to increase.In 2035,Beijing will need 2.16 million tons of grain,0.83 million tons of meat,4.6 billion m3 of water and 91.65 million tons of standard coal of energy while the resources produced and supplied by locality independently will be 0.21 million tons,0.23 million tons,3.3 billion cubic meters and 16.5 million tons of standard coal respectively.Beijing has to draw on cross-boundary production to meet FEW-use with the increasing gap between local supply and demand.②There is a developing trend of the absolute quantity of interaction among FEW.Structurally,the‘outsourcing’feature is obvious and the indigenous nexus links of three resources are shifting to back-end supply chain such as transportation and treatment.③The change of nexus indexes are mainly affected by the mutual and strong dependence between food and water.Food and energy depend more and more on each other;in contrast,the inter-relationship between water and energy is more stable.In addition,inter-regional FEW nexus is strengthened.④To improve systematic management of urban resources,we need to capture multi-tradeoffs of the FEW system comprehensively and establish a multi-regional and multi-factor integrated and collaborative resource management mechanism.
基金supported by U.S.National Science Foundation under Award no.2124849.
文摘This paper investigates a novel engineering problem,i.e.,security-constrained multi-period operation of micro energywater nexuses.This problem is computationally challenging because of its high nonlinearity,nonconvexity,and large dimension.We propose a two-stage iterative algorithm employing a hybrid physics and data-driven contingency filtering(CF)method and convexification to solve it.The convexified master problem is solved in the first stage by considering the base case operation and binding contingencies set(BCS).The second stage updates BCS using physics-based data-driven methods,which include dynamic and filtered data sets.This method is faster than existing CF methods because it relies on offline optimization problems and contains a limited number of online optimization problems.We validate effectiveness of the proposed method using two different case studies:the IEEE 13-bus power system with the EPANET 8-node water system and the IEEE 33-bus power system with the Otsfeld 13-node water system.
基金This manuscript has been authored by employees of UT- Battelle, under contract DE AC05-000R22725 with the US Department of Energy. The authors would also like to acknowledge thefinancial and intellectual support for this research by the Integrated Assessment Research Programof the US Department of Energy's Office of Science, Biological and Environmental Research. Thiswork is supported in part by NSF ACI-1541215.
文摘Modeling the interactions of water and energy systems is important to the enforcement of infrastructure security and system sustainabil-ity.To this end,recent technological advancement has allowed the production of large volumes of data associated with functioning of these sectors.We are beginning to see that statistical and machine learning techniques can help elucidate characteristic patterns across these systems from water availability,transport,and use to energy generation,fuel supply,and customer demand,and in the interde-pendencies among these systems that can leave these systems vul-nerable to cascading impacts from single disruptions.In this paper,we discuss ways in which data and machine learning can be applied to the challenges facing the energy-water nexus along with the potential issues associated with the machine learning techniques themselves.We then survey machine learning techniques that have found application to date in energy-water nexus problems.We con-clude by outlining future research directions and opportunities for collaboration among the energy-water nexus and machine learning communities that can lead to mutual synergistic advantage.
基金This work was supported by the Integrated Assessment Research Program of the US Department of Energy’s Office of ScienceBiological and Environmental Research+1 种基金Department of Energy Office of PolicyNSF ACI-1541215.
文摘The energy-water nexus,or the dependence of energy on water and water on energy,continues to receive attention as impacts on both energy and water supply and demand from growing popula-tions and climate-related stresses are evaluated for future infra-structure planning.Changes in water and energy demand are related to changes in regional temperature,and precipitation extremes can affect water resources available for energy genera-tion for those regional populations.Additionally,the vulnerabilities to the energy and water nexus are beyond the physical infrastruc-tures themselves and extend into supporting and interdependent infrastructures.Evaluation of these vulnerabilities relies on the integration of the disparate and distributed data associated with each of the infrastructures,environments and populations served,and robust analytical methodologies of the data.A capability for the deployment of these methods on relevant data from multiple components on a single platform can provide actionable informa-tion for interested communities,not only for individual energy and water systems,but also for the system of systems that they com-prise.Here,we survey the highest priority data needs and analy-tical methods for inclusion on such a platform.
文摘This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .
文摘Given the challenges facing most humanitarian operations worldwide, a change of approach is needed to ensure greater sustainability of humanitarian settlements right from the planning stage. Some studies attribute unsustainability to inadequate provision of basic resources and highlight the apparent bottlenecks that prevent access to the meaningful data needed to plan and remedy problems. Most operations have relied on an “ad hoc ism” approach, employing parallel and disconnected data processing methods, resulting in a wide range of data being collected without subsequent prioritization to optimize interconnections that could enhance performance. There have been little efforts to study the trade-offs potentially at stake. This work proposes a new framework enabling all subsystems to operate in a single system and focusing on data processing perspective. To achieve this, this paper proposes a Triple Nexus Framework as an attempt to integrate water, energy, and housing sector data derived from a specific sub-system within the overall system in the application of Model-Based Systems Engineering. Understanding the synergies between water, energy, and housing, Systems Engineering characterizes the triple nexus framework and identifies opportunities for improved decision-making in processing operational data from these sectors. Two scenarios illustrate how an integrated platform could be a gateway to access meaningful operational data in the system and a starting point for modeling integrated human settlement systems. Upon execution, the model is tested for nexus megadata processing, and the optimization simulation yielded 67% satisfactory results, demonstrating that an integrated system could improve sustainability, and that capacity building in service delivery is more than beneficial.
文摘This paper presents a quantitative assessment framework of the Water, Energy and Food (W-E-F) nexus. The proposed approach allows integrated quantitative assessments by considering all the W-E-F intersectoral linkages and the competing demand for W-E-F resources to evaluate future development scenarios. Firstly, the conceptual model adopted for the proposed framework is presented. Secondly, a detailed methodological framework is introduced to serve as W-E-F nexus evaluation and planning platform. At the practical level, the model is applied to evaluate the W-E-F nexus in Lebanon. Finally, the conclusions and further developments are presented.
基金Supported by the National Natural Science Foundation of China (General Program),No. 82170921the Sichuan Science and Technology Program,No. 2022YFS0284the Research and Develop Program,West China Hospital of Stomatology Sichuan University,No. LCYJ2019-24
文摘Stem cell fate determination is one of the central questions in stem cell biology,and although its regulation has been studied at genomic and proteomic levels,a variety of biological activities in cells occur at the metabolic level.Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination.While metabolism is considered to play a biological regulatory role as an energy source,recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms,including histone modification,DNA methylation,and microRNAs.Additionally,the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription.The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites.In the present review,we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination,and discuss the potential preventive and therapeutic strategies via targeting metabolites.
文摘Water, Energy and Food (WEF) nexus systems are developed to model and analyze interactions across and between WEF sectors. WEF nexus simulation models permit evaluating the direct and indirect WEF quantitative interaction effects in response to change of technology and/or demand. Optimization models can help to find the optimal combinations of WEF nexus system policy options and parameters that lead to the best performance of the system. This paper describes a framework for integrating quantitative WEF nexus simulation model (the Q-Nexus Model) with an optimization tool, which will give policy makers the ability to compromise best policy options based on WEF nexus simulator. The developed method is then applied to the numerical experiment and the results are discussed. Lastly, the conclusions and further developments are presented.
文摘The quantitative assessment framework of the water, energy and food (WEF) nexus proposed by [1] permits the analysis of the WEF as an interconnected system of resources that directly and indirectly affect one another. The model performs simulation of policy options and scenarios that respond to quantitative variations of the use of WEF resources. One of the key outcomes of the mathematical formulation of the model is the WEF nexus intersectoral technology matrix. In order to take advantages and analyzing policy options of adopting high efficient intersectoral use technologies, WEF intersectoral use intensities and intersectoral allocation coefficients are introduced to the technology matrix of the nexus model proposed in [1]. The developed method is then applied to evaluate the WEF nexus case study of Lebanon. Lastly, the conclusions and further developments are presented.
文摘The Urban Nexus system creates another risk characteristic of resource metabolism. Urban metabolism has complex effects from multi-levels and multi-sectors resulted from the changes socio-economic. It is crucial to implement effective urban governance;in particular, resource metabolism creates a new nexus risk by dramatic growth in urban areas. The resource metabolism associates with water, energy, and food consumption on an urban scale that drives the intensity in resource metabolism. Therefore, this study estimates the FEW intensity of the nexus and demand side in material flow analysis by organizing into four categories of resource metabolism, including supply side, process side, demand side, and final sink. This research compares different characteristics for a small island dominated by tourism and a multi-sector city dominated by increasing economic activity. The resource intensity on the demand side and resource service systems are evaluated to identify the nexus intensity and risk for FEW nexus at the urban scale. This study determines that constraints for resource service systems are complex, and suggests that resource consumption intensity is higher in that particular nexus and demand sector. To avoid excessive loads on resource metabolism, sustainable resource management should implement trade-off strategies after analyzing the resource metabolism for urban nexus.