The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually character...The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.展开更多
According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperatu...According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas.展开更多
Through a systematic observation of water level and temperature, and a comprehensive analysis of the data on major/trace elements, nitrite, hydrogen-oxygen isotopes, the conclusion has been drawn that there are two re...Through a systematic observation of water level and temperature, and a comprehensive analysis of the data on major/trace elements, nitrite, hydrogen-oxygen isotopes, the conclusion has been drawn that there are two relatively independent groundwater systems (cool water and hot water), and the geochemical indicators of hot/cool waters are described. The cool water system is relatively enriched in Ca2+, Mg2+ and HCO3-. Its TDS is relatively low, about 1400–1800 mg/L. The hot water system is relatively enriched in K+, Na+, Cl- and SO42-. Its TDS is relatively high, about 2200–2300 mg/L. The cool water system is enriched in Ba, Ga, Cd, and the hot water system is enriched in B, Ti, Cr, Ni, Cu, Mo, Rb, and Cs, relatively. Especially, the contents of Rb and Cs in the hot water system are more than five times as high as those in the cool water system. The NO3- contents of cool water discharged from the gold mine are relatively high, and those of hot water are extremely low. The δD and δ18O values follow an increasing order of surface water>mine cool water>mine hot water. The cool water comes mainly from the lateral supply of phreatic water, while the hot water comes mainly from the vertical supply of deeply circulating structure-fracture water. The ratio of cool water over hot water was estimated to be about 1:1 by a water quality model..展开更多
Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are use...Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.展开更多
It is very important to define the type and composition of metallogenic fluid in terms of the hydrogen and oxygen isotope data in the study of ore\|forming mechanism. In the long past, the method to discriminate metal...It is very important to define the type and composition of metallogenic fluid in terms of the hydrogen and oxygen isotope data in the study of ore\|forming mechanism. In the long past, the method to discriminate metallogenic fluid sources by comparing the δD\|δ\{\}\+\{18\}O diagram with the standard values is not valid when the hydrogen and oxygen isotope values are plotted between the meteoric water line and the magmatic water area. Based on their hydrogen and oxygen isotope information on five gold deposits (Shuijingtun, Xiaoyingpan, Dongping, Zhongshangou and Jinjiazhuang) in the Zhangjiakou area, this paper details the metallogenic fluid sources and presents water/rock ratios in the five gold deposits and the principle of water/rock exchange.展开更多
基金supported by the West Action Program of the Chinese Academy of Sciences (KZCX2-XB2-04-03)the West Light Foundation of West Doctor of the Chinese Academy of Sciences+1 种基金the China Postdoctoral Science Foundation (Grant No. 200801244 and 20070420135)the Talented Foundation for Young Scientists of Cold and Arid Regions Environmental and Engineering Research Institute (No. 510984911)
文摘The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.
基金financially supported by the China Geological Survey (No. 1212011220014)。
文摘According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas.
文摘Through a systematic observation of water level and temperature, and a comprehensive analysis of the data on major/trace elements, nitrite, hydrogen-oxygen isotopes, the conclusion has been drawn that there are two relatively independent groundwater systems (cool water and hot water), and the geochemical indicators of hot/cool waters are described. The cool water system is relatively enriched in Ca2+, Mg2+ and HCO3-. Its TDS is relatively low, about 1400–1800 mg/L. The hot water system is relatively enriched in K+, Na+, Cl- and SO42-. Its TDS is relatively high, about 2200–2300 mg/L. The cool water system is enriched in Ba, Ga, Cd, and the hot water system is enriched in B, Ti, Cr, Ni, Cu, Mo, Rb, and Cs, relatively. Especially, the contents of Rb and Cs in the hot water system are more than five times as high as those in the cool water system. The NO3- contents of cool water discharged from the gold mine are relatively high, and those of hot water are extremely low. The δD and δ18O values follow an increasing order of surface water>mine cool water>mine hot water. The cool water comes mainly from the lateral supply of phreatic water, while the hot water comes mainly from the vertical supply of deeply circulating structure-fracture water. The ratio of cool water over hot water was estimated to be about 1:1 by a water quality model..
基金supported by the National Natural Science Foundation of China (Grant Nos. 91325102, 91025016 and 91125025)the National Science & Technology Support Project (No. 2011BAC07B05)
文摘Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.
文摘It is very important to define the type and composition of metallogenic fluid in terms of the hydrogen and oxygen isotope data in the study of ore\|forming mechanism. In the long past, the method to discriminate metallogenic fluid sources by comparing the δD\|δ\{\}\+\{18\}O diagram with the standard values is not valid when the hydrogen and oxygen isotope values are plotted between the meteoric water line and the magmatic water area. Based on their hydrogen and oxygen isotope information on five gold deposits (Shuijingtun, Xiaoyingpan, Dongping, Zhongshangou and Jinjiazhuang) in the Zhangjiakou area, this paper details the metallogenic fluid sources and presents water/rock ratios in the five gold deposits and the principle of water/rock exchange.