The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This artic...The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.展开更多
The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy ...The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.展开更多
The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat...The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.展开更多
Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy ...Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.展开更多
Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose compo...Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.展开更多
Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein...Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein, we reported a low-content Pt-doped Rh metallene(Pt-Rhene) for hydrazine-assisted water electrolysis towards energy-saving hydrogen(H_(2)) production, where the ultrathin metallene is constructed to provide enough favorable active sites for catalysis and improve atom utilization.Additionally, the synergistic effect between Rh and Pt can optimize the electronic structure of Rh for improving the intrinsic activity. Therefore, the required overpotential of Pt-Rhene is only 37 mV to reach a current density of-10 mA cm^(-2) in the hydrogen evolution reaction(HER), and the Pt-Rhene exhibits a required overpotential of only 11 mV to reach a current density of 10 mA cm^(-2) in the hydrazine oxidation reaction(HzOR). With the constructed HER-HzOR two-electrode system, the Pt-Rhene electrodes exhibit an extremely low voltage(0.06/0.19/0.28 V) to achieve current densities of 10/50/100 mA cm^(-2) for energy-saving H_(2) production, which greatly reduces the electrolysis energy consumption. Moreover,DFT calculations further demonstrate that the introduction of Pt modulates the electronic structure of Rh and optimizes the d-band center, thus enhancing the adsorption and desorption of reactant/intermediates in the electrocatalytic reaction.展开更多
Over the past decade,medical researchers in China have debated whether the Pi(脾)corresponds to the biomedical spleen or pancreas.This debate exemplifies a broader phenomenon of“anatomical retrofitting”,or the anach...Over the past decade,medical researchers in China have debated whether the Pi(脾)corresponds to the biomedical spleen or pancreas.This debate exemplifies a broader phenomenon of“anatomical retrofitting”,or the anachronistic imposition of contemporary categories onto living historical objects.“Anatomical retrofitting”as a means of rectifying cases of mistranslation further positions the biomedical spleen and pancreas as representing ahistorical,universal truths.This framework gives rise to a conceptual binary:while the biomedical spleen is universalized as what philosophers may describe as“logical”ontology,the Pi connects to a different nature of reality,or“metaphysical”ontology.Far from being an object of imprecision,the Pi was a dynamic vessel that also shared characteristics with the humoral spleen.Given that scholars in China have already subjected Pi to historical scrutiny,this paper urges scholars to do the same with biomedical anatomy.For instance,historically situating the humoral spleen demonstrates that it became less known and less articulated as it transformed into the biomedical spleen.Meanwhile,the pancreas remained an unstable epistemic object that took on the dynamic functions of the humoral spleen in nineteenth-century organotherapy.Through primary source analysis and literature review,this paper contends that the apparent ontological incommensurability between Pi and spleen is neither mutually exclusive nor irreconcilable.Instead,the dynamic nature of internal viscera,their many functions,and their participation in epistemic practices contribute to an ongoing ontological ambivalence that persists despite the forced certainty of anatomical retrofitting.展开更多
Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northw...Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.展开更多
The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of th...The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of the existing building energy efficiency renovation market is the joint role of the market players.Starting with the analysis of the externalities and information asymmetry of the existing building energy efficiency renovation market,this paper analyzes the behavioral characteristics and influencing factors of the existing building energy efficiency renovation market entities(central government,local government,owners,energy conservation service enterprises,third-party evaluation institutions,and other market entities),and reveals the problems of the existing building energy efficiency renovation market,such as the absence of government,the lack of main power,and the lack of financing channels,Thus,it lays a platform foundation for the research on the behavior strategy and security system of the existing building energy-s aving renovation market.展开更多
The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrate...The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.展开更多
Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same co...Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.展开更多
In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the neces...In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.展开更多
With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two c...This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations.展开更多
It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The pla...It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The planning of Ancient Banyan Park in Mengshan County by following the principles of respecting local history and culture,improving functions and supporting facilities,human-centered,overall planning and all-around consideration,respecting characteristics of the local area(the planning site),satisfying operation requirements of the park,applying low-carbon and energy-saving concepts,and avoiding over-engineering,aimed at protecting natural images of the park,primitive history,culture and characteristics of the local area and providing a space for local residents' various activities.Modern aesthetic forms were combined,cultural connotation of natural environment stressed to build a landscape space system of the Ancient Banyan Park that matches well with environment of the planning site.The park was designed into 4 functional areas:sport area,fitness plaza area,garden recreational area and ancient banyan cultural area.Different functions of these subareas were taken into consideration to create conservation-minded garden landscapes which were both independent and unified.展开更多
By investigating present relocation residential districts for peasants whose houses are removed for the unified planning of rural areas in north Jiangsu Province, as well as residents' feelings about the environme...By investigating present relocation residential districts for peasants whose houses are removed for the unified planning of rural areas in north Jiangsu Province, as well as residents' feelings about the environment of residential district, main architectural structures and energy consumption conditions, the indoor thermal environment, use of main heating and cooling facilities, residents' satisfaction on the acoustical and luminous environment, major space-enclosing structures and calculation of energy-saving designs are analyzed, and suggestions are given for the architectural design of relocation residential districts in the study area. It is stressed that the relationship between energy conservation and architectural layout, orientation, lighting, ventilation, selection of enclosing-structure materials, facade, color and style should be properly handled in the planning, and the focus is to control building orientation and shape coefficient, on the basis of which energy-saving designs of windows, exterior walls and roofs can be done. Energy consumption of present residential buildings is calculated and analyzed to bring forth new ideas to the energy-saving designs for relocation residential districts in north Jiangsu Province, and establish an architectural energy-saving system suitable for climatic and natural conditions of north Jiangsu to instruct the energy-saving designs of relocation residential districts in the study area.展开更多
The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the po...The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.展开更多
Cu-Zn,Cu-Zn-Sn,Cu-Zn-Ni alloys were melted by vacuum smelter.The effect factors to the surface free energy of the alloys such as chemical composition,crystal structure and surface crystal lattice distortion etc.were i...Cu-Zn,Cu-Zn-Sn,Cu-Zn-Ni alloys were melted by vacuum smelter.The effect factors to the surface free energy of the alloys such as chemical composition,crystal structure and surface crystal lattice distortion etc.were investigated by OCA30 automatic contact angle test instrument,metallography microscope and XRD instrument etc.Results suggests:adding alloy element to Cu may increase its surface free energy,and the more kinds of alloy elements are added,the more surface free energy increases;the alloy element Sn an increase the surface free energy of Cu-Zn alloy;Cu-Zn alloy with fir-tree crystal structure,great phase discrepancy and obvious composition aliquation has greater surface free energy;Cu-Zn alloy with compounds and serious surface crystal lattice distortion has greater surface free energy.展开更多
Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were ...Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were the problems of larger structure resistanceand lower diffusing efficiency of these diffusers by analysis of CFD results.Thestructure outlines of the energy-saving diffuser were constructed by the application ofstream function and potential function superimposing.On the basis of numerical simulationsof energy-saving diffusers of 5 area-enlarging ratios, structural resistances and diffusingefficiencies of 5 energy-saving diffusers were comparatively analyzed, and therange from 2.00 to 2.31 of the rational area-enlarging ratio of energy-saving diffusers wasderived.The optimization area-enlarging ratio of the energy-saving diffuser was presently2.28 through comparable analysis.From the above, the results show that the coefficient ofperformance of the energy-saving diffuser is better than 3 existing diffusers.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.
基金Research on Zero Emission Campus Construction Based on Plant Community Optimization(Project number:KJQN202305605)。
文摘The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.
文摘The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.
文摘Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.
基金supported by the National Natural Science Foundation of China (Nos. 32071687 and 52273247)Jiangsu Qinglan Project
文摘Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.
基金financially supported by the National Natural Science Foundation of China (No. 21972126, 21978264, 21905250, and 22278369)the Natural Science Foundation of Zhejiang Province (No. LQ22B030012 and LQ23B030010)the China Postdoctoral Science Foundation (2021M702889)。
文摘Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein, we reported a low-content Pt-doped Rh metallene(Pt-Rhene) for hydrazine-assisted water electrolysis towards energy-saving hydrogen(H_(2)) production, where the ultrathin metallene is constructed to provide enough favorable active sites for catalysis and improve atom utilization.Additionally, the synergistic effect between Rh and Pt can optimize the electronic structure of Rh for improving the intrinsic activity. Therefore, the required overpotential of Pt-Rhene is only 37 mV to reach a current density of-10 mA cm^(-2) in the hydrogen evolution reaction(HER), and the Pt-Rhene exhibits a required overpotential of only 11 mV to reach a current density of 10 mA cm^(-2) in the hydrazine oxidation reaction(HzOR). With the constructed HER-HzOR two-electrode system, the Pt-Rhene electrodes exhibit an extremely low voltage(0.06/0.19/0.28 V) to achieve current densities of 10/50/100 mA cm^(-2) for energy-saving H_(2) production, which greatly reduces the electrolysis energy consumption. Moreover,DFT calculations further demonstrate that the introduction of Pt modulates the electronic structure of Rh and optimizes the d-band center, thus enhancing the adsorption and desorption of reactant/intermediates in the electrocatalytic reaction.
文摘Over the past decade,medical researchers in China have debated whether the Pi(脾)corresponds to the biomedical spleen or pancreas.This debate exemplifies a broader phenomenon of“anatomical retrofitting”,or the anachronistic imposition of contemporary categories onto living historical objects.“Anatomical retrofitting”as a means of rectifying cases of mistranslation further positions the biomedical spleen and pancreas as representing ahistorical,universal truths.This framework gives rise to a conceptual binary:while the biomedical spleen is universalized as what philosophers may describe as“logical”ontology,the Pi connects to a different nature of reality,or“metaphysical”ontology.Far from being an object of imprecision,the Pi was a dynamic vessel that also shared characteristics with the humoral spleen.Given that scholars in China have already subjected Pi to historical scrutiny,this paper urges scholars to do the same with biomedical anatomy.For instance,historically situating the humoral spleen demonstrates that it became less known and less articulated as it transformed into the biomedical spleen.Meanwhile,the pancreas remained an unstable epistemic object that took on the dynamic functions of the humoral spleen in nineteenth-century organotherapy.Through primary source analysis and literature review,this paper contends that the apparent ontological incommensurability between Pi and spleen is neither mutually exclusive nor irreconcilable.Instead,the dynamic nature of internal viscera,their many functions,and their participation in epistemic practices contribute to an ongoing ontological ambivalence that persists despite the forced certainty of anatomical retrofitting.
基金Supported by Scientific Research Project of Hunan Province in 2020(20C1848)。
文摘Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China (Grant No. 20JHQ095)。
文摘The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of the existing building energy efficiency renovation market is the joint role of the market players.Starting with the analysis of the externalities and information asymmetry of the existing building energy efficiency renovation market,this paper analyzes the behavioral characteristics and influencing factors of the existing building energy efficiency renovation market entities(central government,local government,owners,energy conservation service enterprises,third-party evaluation institutions,and other market entities),and reveals the problems of the existing building energy efficiency renovation market,such as the absence of government,the lack of main power,and the lack of financing channels,Thus,it lays a platform foundation for the research on the behavior strategy and security system of the existing building energy-s aving renovation market.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the EducationDepartment of China (Grant No. 20JHQ095)。
文摘The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.
基金Project(2006BAJ03A10) supported by the National Key Technologies R & D Program of China
文摘Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.
文摘In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
文摘This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations.
基金Supported by Scientific Research Program of Guangxi Provincial Department of Education(201010LX014)~~
文摘It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The planning of Ancient Banyan Park in Mengshan County by following the principles of respecting local history and culture,improving functions and supporting facilities,human-centered,overall planning and all-around consideration,respecting characteristics of the local area(the planning site),satisfying operation requirements of the park,applying low-carbon and energy-saving concepts,and avoiding over-engineering,aimed at protecting natural images of the park,primitive history,culture and characteristics of the local area and providing a space for local residents' various activities.Modern aesthetic forms were combined,cultural connotation of natural environment stressed to build a landscape space system of the Ancient Banyan Park that matches well with environment of the planning site.The park was designed into 4 functional areas:sport area,fitness plaza area,garden recreational area and ancient banyan cultural area.Different functions of these subareas were taken into consideration to create conservation-minded garden landscapes which were both independent and unified.
基金Supported by Talent-Introduction Scientific Research Program of Yancheng Institute of Technology(XKR2011078)~~
文摘By investigating present relocation residential districts for peasants whose houses are removed for the unified planning of rural areas in north Jiangsu Province, as well as residents' feelings about the environment of residential district, main architectural structures and energy consumption conditions, the indoor thermal environment, use of main heating and cooling facilities, residents' satisfaction on the acoustical and luminous environment, major space-enclosing structures and calculation of energy-saving designs are analyzed, and suggestions are given for the architectural design of relocation residential districts in the study area. It is stressed that the relationship between energy conservation and architectural layout, orientation, lighting, ventilation, selection of enclosing-structure materials, facade, color and style should be properly handled in the planning, and the focus is to control building orientation and shape coefficient, on the basis of which energy-saving designs of windows, exterior walls and roofs can be done. Energy consumption of present residential buildings is calculated and analyzed to bring forth new ideas to the energy-saving designs for relocation residential districts in north Jiangsu Province, and establish an architectural energy-saving system suitable for climatic and natural conditions of north Jiangsu to instruct the energy-saving designs of relocation residential districts in the study area.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2010AA044401)
文摘The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.
基金This work was financially supported by the Key Technologies R&D Programme of Tianjin(06YFGZGX02400).
文摘Cu-Zn,Cu-Zn-Sn,Cu-Zn-Ni alloys were melted by vacuum smelter.The effect factors to the surface free energy of the alloys such as chemical composition,crystal structure and surface crystal lattice distortion etc.were investigated by OCA30 automatic contact angle test instrument,metallography microscope and XRD instrument etc.Results suggests:adding alloy element to Cu may increase its surface free energy,and the more kinds of alloy elements are added,the more surface free energy increases;the alloy element Sn an increase the surface free energy of Cu-Zn alloy;Cu-Zn alloy with fir-tree crystal structure,great phase discrepancy and obvious composition aliquation has greater surface free energy;Cu-Zn alloy with compounds and serious surface crystal lattice distortion has greater surface free energy.
基金Supported by the National Natural Science Foundation of China(50974060)the Scientific Research Fund of Hunan Provincial Education Department(09CY014)the Doctoral Fund of Hunan University of Science and Technology
文摘Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were the problems of larger structure resistanceand lower diffusing efficiency of these diffusers by analysis of CFD results.Thestructure outlines of the energy-saving diffuser were constructed by the application ofstream function and potential function superimposing.On the basis of numerical simulationsof energy-saving diffusers of 5 area-enlarging ratios, structural resistances and diffusingefficiencies of 5 energy-saving diffusers were comparatively analyzed, and therange from 2.00 to 2.31 of the rational area-enlarging ratio of energy-saving diffusers wasderived.The optimization area-enlarging ratio of the energy-saving diffuser was presently2.28 through comparable analysis.From the above, the results show that the coefficient ofperformance of the energy-saving diffuser is better than 3 existing diffusers.