The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This artic...The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.展开更多
The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy ...The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.展开更多
The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat...The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.展开更多
Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy ...Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.展开更多
Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose compo...Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.展开更多
Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein...Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein, we reported a low-content Pt-doped Rh metallene(Pt-Rhene) for hydrazine-assisted water electrolysis towards energy-saving hydrogen(H_(2)) production, where the ultrathin metallene is constructed to provide enough favorable active sites for catalysis and improve atom utilization.Additionally, the synergistic effect between Rh and Pt can optimize the electronic structure of Rh for improving the intrinsic activity. Therefore, the required overpotential of Pt-Rhene is only 37 mV to reach a current density of-10 mA cm^(-2) in the hydrogen evolution reaction(HER), and the Pt-Rhene exhibits a required overpotential of only 11 mV to reach a current density of 10 mA cm^(-2) in the hydrazine oxidation reaction(HzOR). With the constructed HER-HzOR two-electrode system, the Pt-Rhene electrodes exhibit an extremely low voltage(0.06/0.19/0.28 V) to achieve current densities of 10/50/100 mA cm^(-2) for energy-saving H_(2) production, which greatly reduces the electrolysis energy consumption. Moreover,DFT calculations further demonstrate that the introduction of Pt modulates the electronic structure of Rh and optimizes the d-band center, thus enhancing the adsorption and desorption of reactant/intermediates in the electrocatalytic reaction.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northw...Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.展开更多
The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of th...The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of the existing building energy efficiency renovation market is the joint role of the market players.Starting with the analysis of the externalities and information asymmetry of the existing building energy efficiency renovation market,this paper analyzes the behavioral characteristics and influencing factors of the existing building energy efficiency renovation market entities(central government,local government,owners,energy conservation service enterprises,third-party evaluation institutions,and other market entities),and reveals the problems of the existing building energy efficiency renovation market,such as the absence of government,the lack of main power,and the lack of financing channels,Thus,it lays a platform foundation for the research on the behavior strategy and security system of the existing building energy-s aving renovation market.展开更多
The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrate...The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.展开更多
Bus safety is a matter of great importance in many developing countries, with driving behaviors among bus drivers identified as a primary factor contributing to accidents. This concern is particularly amplified in mix...Bus safety is a matter of great importance in many developing countries, with driving behaviors among bus drivers identified as a primary factor contributing to accidents. This concern is particularly amplified in mixed traffic flow (MTF) environments with time pressure (TP). However, there is a lack of sufficient research exploring the relationships among these factors. This study consists of two papers that aim to investigate the impact of MTF environments with TP on the driving behaviors of bus drivers. While the first paper focuses on violated driving behaviors, this particular paper delves into mistake-prone driving behaviors (MDB). To collect data on MDB, as well as perceptions of MTF and TP, a questionnaire survey was implemented among bus drivers. Factor analyses were employed to create new measurements for validating MDB in MTF environments. The study utilized partial correlation and linear regression analyses with the Bayesian Model Averaging (BMA) method to explore the relationships between MDB and MTF/TP. The results revealed a modified scale for MDB. Two MTF factors and two TP factors were found to be significantly associated with MDB. A high presence of motorcycles and dangerous interactions among vehicles were not found to be associated with MDB among bus drivers. However, bus drivers who perceived motorcyclists as aggressive, considered road users’ traffic habits as unsafe, and perceived bus routes’ punctuality and organization as very strict were more likely to exhibit MDB. Moreover, the results from the three MDB predictive models demonstrated a positive impact of bus route organization on MDB among bus drivers. The study also examined various relationships between the socio-demographic characteristics of bus drivers and MDB. These findings are of practical significance in developing interventions aimed at reducing MDB among bus drivers operating in MTF environments with TP.展开更多
ESCO is the internal driving force for the development of the existing building energy-saving renovation market,and the driving effect of the ESCO market depends on scientific and effective comprehensive benefit evalu...ESCO is the internal driving force for the development of the existing building energy-saving renovation market,and the driving effect of the ESCO market depends on scientific and effective comprehensive benefit evaluation.Based on analysis of the status qua at home and abroad,this paper reveals the necessity and value of research existing Building Energy Saving ESCO market development driving force effectiveness evaluation.The purpose of ESCO driving force benefit evaluation-oriented,establish the basic principles of evaluation index system of choice.Through the analysis of the evaluation content of the three dimensions of economic benefit,environmental benefit and social benefit,the comprehensive evaluation index system of the target level,criterion level and index level of the benefit evaluation of the existing building energy-saving renovation market development is constructed.AHP and fuzzy comprehensive evaluation of the combination,construct quantitative models of energy-saving drive ESCO market development role in the evaluation of the effectiveness of existing buildings.Based on the quantitative evaluation process of ESCO’s role in the development of our country’s existing building energysaving renovation market,it is necessary to scientifically understand the current status of ESCO’s driving role,and reveal the path to improve the efficiency of ESCO-driven development of the existing building’s energy-saving renovation market,in order to enhance the internal driving force of ESCO to promote.The existing building energy-saving renovation market is developing in a healthy and orderly manner.展开更多
Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP lev...Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed.展开更多
In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the neces...In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo...Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.展开更多
Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly...Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.展开更多
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te...Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.展开更多
Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector ...Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.
基金Research on Zero Emission Campus Construction Based on Plant Community Optimization(Project number:KJQN202305605)。
文摘The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.
文摘The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.
文摘Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.
基金supported by the National Natural Science Foundation of China (Nos. 32071687 and 52273247)Jiangsu Qinglan Project
文摘Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.
基金financially supported by the National Natural Science Foundation of China (No. 21972126, 21978264, 21905250, and 22278369)the Natural Science Foundation of Zhejiang Province (No. LQ22B030012 and LQ23B030010)the China Postdoctoral Science Foundation (2021M702889)。
文摘Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein, we reported a low-content Pt-doped Rh metallene(Pt-Rhene) for hydrazine-assisted water electrolysis towards energy-saving hydrogen(H_(2)) production, where the ultrathin metallene is constructed to provide enough favorable active sites for catalysis and improve atom utilization.Additionally, the synergistic effect between Rh and Pt can optimize the electronic structure of Rh for improving the intrinsic activity. Therefore, the required overpotential of Pt-Rhene is only 37 mV to reach a current density of-10 mA cm^(-2) in the hydrogen evolution reaction(HER), and the Pt-Rhene exhibits a required overpotential of only 11 mV to reach a current density of 10 mA cm^(-2) in the hydrazine oxidation reaction(HzOR). With the constructed HER-HzOR two-electrode system, the Pt-Rhene electrodes exhibit an extremely low voltage(0.06/0.19/0.28 V) to achieve current densities of 10/50/100 mA cm^(-2) for energy-saving H_(2) production, which greatly reduces the electrolysis energy consumption. Moreover,DFT calculations further demonstrate that the introduction of Pt modulates the electronic structure of Rh and optimizes the d-band center, thus enhancing the adsorption and desorption of reactant/intermediates in the electrocatalytic reaction.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金Supported by Scientific Research Project of Hunan Province in 2020(20C1848)。
文摘Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China (Grant No. 20JHQ095)。
文摘The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of the existing building energy efficiency renovation market is the joint role of the market players.Starting with the analysis of the externalities and information asymmetry of the existing building energy efficiency renovation market,this paper analyzes the behavioral characteristics and influencing factors of the existing building energy efficiency renovation market entities(central government,local government,owners,energy conservation service enterprises,third-party evaluation institutions,and other market entities),and reveals the problems of the existing building energy efficiency renovation market,such as the absence of government,the lack of main power,and the lack of financing channels,Thus,it lays a platform foundation for the research on the behavior strategy and security system of the existing building energy-s aving renovation market.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the EducationDepartment of China (Grant No. 20JHQ095)。
文摘The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.
文摘Bus safety is a matter of great importance in many developing countries, with driving behaviors among bus drivers identified as a primary factor contributing to accidents. This concern is particularly amplified in mixed traffic flow (MTF) environments with time pressure (TP). However, there is a lack of sufficient research exploring the relationships among these factors. This study consists of two papers that aim to investigate the impact of MTF environments with TP on the driving behaviors of bus drivers. While the first paper focuses on violated driving behaviors, this particular paper delves into mistake-prone driving behaviors (MDB). To collect data on MDB, as well as perceptions of MTF and TP, a questionnaire survey was implemented among bus drivers. Factor analyses were employed to create new measurements for validating MDB in MTF environments. The study utilized partial correlation and linear regression analyses with the Bayesian Model Averaging (BMA) method to explore the relationships between MDB and MTF/TP. The results revealed a modified scale for MDB. Two MTF factors and two TP factors were found to be significantly associated with MDB. A high presence of motorcycles and dangerous interactions among vehicles were not found to be associated with MDB among bus drivers. However, bus drivers who perceived motorcyclists as aggressive, considered road users’ traffic habits as unsafe, and perceived bus routes’ punctuality and organization as very strict were more likely to exhibit MDB. Moreover, the results from the three MDB predictive models demonstrated a positive impact of bus route organization on MDB among bus drivers. The study also examined various relationships between the socio-demographic characteristics of bus drivers and MDB. These findings are of practical significance in developing interventions aimed at reducing MDB among bus drivers operating in MTF environments with TP.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Ministry of Education of China(20JHQ095)Higher Education Innovation Team of Tianjin(TD13-5006).
文摘ESCO is the internal driving force for the development of the existing building energy-saving renovation market,and the driving effect of the ESCO market depends on scientific and effective comprehensive benefit evaluation.Based on analysis of the status qua at home and abroad,this paper reveals the necessity and value of research existing Building Energy Saving ESCO market development driving force effectiveness evaluation.The purpose of ESCO driving force benefit evaluation-oriented,establish the basic principles of evaluation index system of choice.Through the analysis of the evaluation content of the three dimensions of economic benefit,environmental benefit and social benefit,the comprehensive evaluation index system of the target level,criterion level and index level of the benefit evaluation of the existing building energy-saving renovation market development is constructed.AHP and fuzzy comprehensive evaluation of the combination,construct quantitative models of energy-saving drive ESCO market development role in the evaluation of the effectiveness of existing buildings.Based on the quantitative evaluation process of ESCO’s role in the development of our country’s existing building energysaving renovation market,it is necessary to scientifically understand the current status of ESCO’s driving role,and reveal the path to improve the efficiency of ESCO-driven development of the existing building’s energy-saving renovation market,in order to enhance the internal driving force of ESCO to promote.The existing building energy-saving renovation market is developing in a healthy and orderly manner.
文摘Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed.
文摘In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.
基金Project supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.
基金the Fundamental Research Funds for the Central Universities(GrantNo.IR2021222)received by J.Sthe Future Science and Technology Innovation Team Project of HIT(216506)received by Q.W.
文摘Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.
基金Project supported by the Doctoral Fund of Yanshan University (Grant No.B919)the Program of Independent Research for Young Teachers of Yanshan University (Grant No.020000534)the S&T Program of Hebei Province of China (Grant No.QN2016123)。
文摘Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
基金Supported by National Key R&D Program of China (Grant No.2023YFB3407103)National Natural Science Foundation of China (Grant Nos.52175242,52175027)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes.