The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy ...The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.展开更多
The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat...The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.展开更多
Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy ...Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.展开更多
Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose compo...Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.展开更多
Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein...Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein, we reported a low-content Pt-doped Rh metallene(Pt-Rhene) for hydrazine-assisted water electrolysis towards energy-saving hydrogen(H_(2)) production, where the ultrathin metallene is constructed to provide enough favorable active sites for catalysis and improve atom utilization.Additionally, the synergistic effect between Rh and Pt can optimize the electronic structure of Rh for improving the intrinsic activity. Therefore, the required overpotential of Pt-Rhene is only 37 mV to reach a current density of-10 mA cm^(-2) in the hydrogen evolution reaction(HER), and the Pt-Rhene exhibits a required overpotential of only 11 mV to reach a current density of 10 mA cm^(-2) in the hydrazine oxidation reaction(HzOR). With the constructed HER-HzOR two-electrode system, the Pt-Rhene electrodes exhibit an extremely low voltage(0.06/0.19/0.28 V) to achieve current densities of 10/50/100 mA cm^(-2) for energy-saving H_(2) production, which greatly reduces the electrolysis energy consumption. Moreover,DFT calculations further demonstrate that the introduction of Pt modulates the electronic structure of Rh and optimizes the d-band center, thus enhancing the adsorption and desorption of reactant/intermediates in the electrocatalytic reaction.展开更多
Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northw...Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.展开更多
The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of th...The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of the existing building energy efficiency renovation market is the joint role of the market players.Starting with the analysis of the externalities and information asymmetry of the existing building energy efficiency renovation market,this paper analyzes the behavioral characteristics and influencing factors of the existing building energy efficiency renovation market entities(central government,local government,owners,energy conservation service enterprises,third-party evaluation institutions,and other market entities),and reveals the problems of the existing building energy efficiency renovation market,such as the absence of government,the lack of main power,and the lack of financing channels,Thus,it lays a platform foundation for the research on the behavior strategy and security system of the existing building energy-s aving renovation market.展开更多
The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrate...The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.展开更多
The DS-1 catalyst for energy-saving natural gas steam reforming was preparedby using potash as a carbon-resistant additive and adding rare earth oxide. The catalystdemonstrated good reducibility, carbon resistance, ac...The DS-1 catalyst for energy-saving natural gas steam reforming was preparedby using potash as a carbon-resistant additive and adding rare earth oxide. The catalystdemonstrated good reducibility, carbon resistance, activity and stability in aging tests and 500 hstability tests at low water/carbon ratios.展开更多
As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)prese...As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)presents an emergent technology for MSW upcycling,offering to ease waste management burdens and bolster the burgeoning hydrogen economy.Despite early initiatives to advance TSGR technology,a cohesive and critical analysis of cutting-edge knowledge and strategies to enhance hydrogen production remains lacking.This review aggregates literature on MSW upcycling to hydrogen via TSGR,with a focus on optimizing process control and catalytic efficiency.It underscores technological avenues to augment hydrogen output,curtail catalyst costs,and refine system performance.Particularly,the review illuminates the potential for integrating chemical and calcium looping into TSGR processes,identifying opportunities,and pinpointing challenges.The review concludes with a summary of the current state of techno-economic analysis for this technology,presenting outstanding challenges and future research directions,with the ultimate goal of transitioning WTH from theoretical to practical application.展开更多
In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the neces...In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.展开更多
Using the Xi’an Mingde Institute of Technology students as the teaching object and the Personal Finance course as an example,we explore the reform of the ideological and political assessment system of process-trackin...Using the Xi’an Mingde Institute of Technology students as the teaching object and the Personal Finance course as an example,we explore the reform of the ideological and political assessment system of process-tracking courses in applied universities.The article analyzes the feasibility of applying the curriculum ideological and political assessment system in college courses and compares the traditional assessment system.It also proposes that applying curriculum ideological and political assessment to the college curriculum assessment system will help improve students’understanding of the“value guidance”in curriculum ideological and political education and enhance the teaching effect.展开更多
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s...To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.展开更多
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu...Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.展开更多
Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way t...Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way to control the hard limestone roof.In this study,the effects of various factors on the reaction characteristics and mechanical properties of limestone were analyzed.The results show that the acid with stronger hydrogen production capacity after ionization(pK_(a)<0)has more prominent damage to the mineral grains of limestone.When pKa increases from−8.00 to 15.70,uniaxial compressive strength and elastic modulus of limestone increase by 117.22%and 75.98%.The influence of acid concentration is manifested in the dissolution behavior of mineral crystals,the crystal defects caused by large-scale acid action will lead to the deterioration of limestone strength,and the strength after 15%concentration reformation can be reduced by 59.42%.The effect of acidification time on limestone has stages and is the most obvious in the initial metathesis reaction stage(within 60 min).The key to the strength damage of acidified limestone is the participation of hydrogen ions in the reaction system.Based on the analytic hierarchy process method,the influence weights of acid type,acid concentration and acidification time on strength are 24.30%,59.54% and 16.16%,respectively.The research results provide theoretical support for the acidification control of hard limestone roofs in coal mines.展开更多
This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimiz...This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.展开更多
Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on Ce...Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min.展开更多
With the deepening of reform and opening up,the rural land system has experienced the evolution from contracting to transfer to the current rural revitalization strategy,and has always been closely linked to the well-...With the deepening of reform and opening up,the rural land system has experienced the evolution from contracting to transfer to the current rural revitalization strategy,and has always been closely linked to the well-being of farmers and the vigorous development of the rural economy.The reform of this system is not only a key driving force for rural economic development,but also an important cornerstone for realizing the rural revitalization strategy.Through in-depth analysis of the connotation of rural revitalization and rural land system reform,this study discusses in detail the internal dynamic mechanism of rural land system reform driving rural revitalization,and comprehensively analyzes the current implementation of rural land system reform.On this basis,this study puts forward the strategic concept of promoting the rural land system reform in the context of rural revitalization.Studies have shown that the rural land system reform has mainly played a positive role in the following four aspects in promoting rural revitalization:providing a solid material foundation for rural revitalization,optimizing the allocation of rural resources,promoting the transformation and upgrading of rural industrial structure,and promoting rural social harmony and stability.In the context of the current rural revitalization,the rural land system reform is undoubtedly one of the core issues of China s rural development.In order to further improve this system,we need to continue to optimize and innovate the rural land transfer system,the homestead reform system,and the rural collective construction land market entry system.展开更多
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ...Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金Research on Zero Emission Campus Construction Based on Plant Community Optimization(Project number:KJQN202305605)。
文摘The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.
文摘The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.
文摘Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.
基金supported by the National Natural Science Foundation of China (Nos. 32071687 and 52273247)Jiangsu Qinglan Project
文摘Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings.
基金financially supported by the National Natural Science Foundation of China (No. 21972126, 21978264, 21905250, and 22278369)the Natural Science Foundation of Zhejiang Province (No. LQ22B030012 and LQ23B030010)the China Postdoctoral Science Foundation (2021M702889)。
文摘Utilizing the hydrazine-assisted water electrolysis for energy-efficient hydrogen production shows a promising application, which relies on the development and design of efficient bifunctional electrocatalysts. Herein, we reported a low-content Pt-doped Rh metallene(Pt-Rhene) for hydrazine-assisted water electrolysis towards energy-saving hydrogen(H_(2)) production, where the ultrathin metallene is constructed to provide enough favorable active sites for catalysis and improve atom utilization.Additionally, the synergistic effect between Rh and Pt can optimize the electronic structure of Rh for improving the intrinsic activity. Therefore, the required overpotential of Pt-Rhene is only 37 mV to reach a current density of-10 mA cm^(-2) in the hydrogen evolution reaction(HER), and the Pt-Rhene exhibits a required overpotential of only 11 mV to reach a current density of 10 mA cm^(-2) in the hydrazine oxidation reaction(HzOR). With the constructed HER-HzOR two-electrode system, the Pt-Rhene electrodes exhibit an extremely low voltage(0.06/0.19/0.28 V) to achieve current densities of 10/50/100 mA cm^(-2) for energy-saving H_(2) production, which greatly reduces the electrolysis energy consumption. Moreover,DFT calculations further demonstrate that the introduction of Pt modulates the electronic structure of Rh and optimizes the d-band center, thus enhancing the adsorption and desorption of reactant/intermediates in the electrocatalytic reaction.
基金Supported by Scientific Research Project of Hunan Province in 2020(20C1848)。
文摘Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China (Grant No. 20JHQ095)。
文摘The long-term and effective implementation of the existing building energy efficiency renovation depends on the development of the existing building energy efficiency renovation market.The key to the development of the existing building energy efficiency renovation market is the joint role of the market players.Starting with the analysis of the externalities and information asymmetry of the existing building energy efficiency renovation market,this paper analyzes the behavioral characteristics and influencing factors of the existing building energy efficiency renovation market entities(central government,local government,owners,energy conservation service enterprises,third-party evaluation institutions,and other market entities),and reveals the problems of the existing building energy efficiency renovation market,such as the absence of government,the lack of main power,and the lack of financing channels,Thus,it lays a platform foundation for the research on the behavior strategy and security system of the existing building energy-s aving renovation market.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the EducationDepartment of China (Grant No. 20JHQ095)。
文摘The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.
文摘The DS-1 catalyst for energy-saving natural gas steam reforming was preparedby using potash as a carbon-resistant additive and adding rare earth oxide. The catalystdemonstrated good reducibility, carbon resistance, activity and stability in aging tests and 500 hstability tests at low water/carbon ratios.
基金supported by the National Natural Science Foundation of China(52276202)the Tsinghua-Toyota Joint Research Fund.
文摘As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)presents an emergent technology for MSW upcycling,offering to ease waste management burdens and bolster the burgeoning hydrogen economy.Despite early initiatives to advance TSGR technology,a cohesive and critical analysis of cutting-edge knowledge and strategies to enhance hydrogen production remains lacking.This review aggregates literature on MSW upcycling to hydrogen via TSGR,with a focus on optimizing process control and catalytic efficiency.It underscores technological avenues to augment hydrogen output,curtail catalyst costs,and refine system performance.Particularly,the review illuminates the potential for integrating chemical and calcium looping into TSGR processes,identifying opportunities,and pinpointing challenges.The review concludes with a summary of the current state of techno-economic analysis for this technology,presenting outstanding challenges and future research directions,with the ultimate goal of transitioning WTH from theoretical to practical application.
文摘In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.
基金Xi’an Mingde Institute of Technology’s 2023 school-level education and teaching reform research project“Exploration of the Reform of the Ideological and Political Assessment System of Process-Tracking Courses in Applied Universities”(Project number:JG2023YB06)。
文摘Using the Xi’an Mingde Institute of Technology students as the teaching object and the Personal Finance course as an example,we explore the reform of the ideological and political assessment system of process-tracking courses in applied universities.The article analyzes the feasibility of applying the curriculum ideological and political assessment system in college courses and compares the traditional assessment system.It also proposes that applying curriculum ideological and political assessment to the college curriculum assessment system will help improve students’understanding of the“value guidance”in curriculum ideological and political education and enhance the teaching effect.
基金National Natural Science Foundation of China(Grant Nos:22038011,51976168)K.C.Wong Education Foundation,the Natural Science Basic Research Program of Shaanxi(Program No.2021JLM-17)+1 种基金Programme of Introducing Talents of Discipline to Universities(B23025)Innovation Capability Support Program of Shaanxi(Program Nos:2023KJXX-004,2023-CX-TD-26,2022KXJ-126).
文摘To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.
基金financially supported by the National Natural Science Foundation of China (Nos. 52174279, U2202251, and 52266008)Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (No. 202201AV070004)+1 种基金Central Guiding Local Science and Technology Development Fund (No. 202207AA110001)the Yunnan Fundamental Research Projects (No. 202301AU070027, 202401AT070388)
文摘Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.
基金Project(2021YFC2902102)supported by the National Key Research and Development Program of ChinaProject(52374142)supported by the National Natural Science Foundation of ChinaProject(JSTU-2022-066)supported by the Young Talent Support Project of Jiangsu Association for Science and Technology,China。
文摘Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way to control the hard limestone roof.In this study,the effects of various factors on the reaction characteristics and mechanical properties of limestone were analyzed.The results show that the acid with stronger hydrogen production capacity after ionization(pK_(a)<0)has more prominent damage to the mineral grains of limestone.When pKa increases from−8.00 to 15.70,uniaxial compressive strength and elastic modulus of limestone increase by 117.22%and 75.98%.The influence of acid concentration is manifested in the dissolution behavior of mineral crystals,the crystal defects caused by large-scale acid action will lead to the deterioration of limestone strength,and the strength after 15%concentration reformation can be reduced by 59.42%.The effect of acidification time on limestone has stages and is the most obvious in the initial metathesis reaction stage(within 60 min).The key to the strength damage of acidified limestone is the participation of hydrogen ions in the reaction system.Based on the analytic hierarchy process method,the influence weights of acid type,acid concentration and acidification time on strength are 24.30%,59.54% and 16.16%,respectively.The research results provide theoretical support for the acidification control of hard limestone roofs in coal mines.
基金This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393the funding from the National Natural Science Foundation of China (No. 52177149)
文摘This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.
基金supported by the Key Research and Design Program of Qinhuangdao(202101A005)the Science and Technology Project of Hebei Education Department(QN2023094)+2 种基金the Cultivation Project for Basic Research and Innovation of Yanshan University(2021LGQN028)the Project for Research and Development of Metal Catalysts for Photo-thermal Decomposition of Waste Plastics to Prepare Value-added Chemicals(x2023322)the Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(22567616H).
文摘Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min.
文摘With the deepening of reform and opening up,the rural land system has experienced the evolution from contracting to transfer to the current rural revitalization strategy,and has always been closely linked to the well-being of farmers and the vigorous development of the rural economy.The reform of this system is not only a key driving force for rural economic development,but also an important cornerstone for realizing the rural revitalization strategy.Through in-depth analysis of the connotation of rural revitalization and rural land system reform,this study discusses in detail the internal dynamic mechanism of rural land system reform driving rural revitalization,and comprehensively analyzes the current implementation of rural land system reform.On this basis,this study puts forward the strategic concept of promoting the rural land system reform in the context of rural revitalization.Studies have shown that the rural land system reform has mainly played a positive role in the following four aspects in promoting rural revitalization:providing a solid material foundation for rural revitalization,optimizing the allocation of rural resources,promoting the transformation and upgrading of rural industrial structure,and promoting rural social harmony and stability.In the context of the current rural revitalization,the rural land system reform is undoubtedly one of the core issues of China s rural development.In order to further improve this system,we need to continue to optimize and innovate the rural land transfer system,the homestead reform system,and the rural collective construction land market entry system.
基金funding from the European Union's Horizon 2020 Research and Innovation Program(872102)P.S.thanks the Science Achievement Scholarship of Thailand(SAST)for her research secondment at The University of Manchester.Y.J.thanks the National Natural Science Foundation of China(22378407)for funding.
文摘Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.