Li_(4)Ti_(5)O_(12)(LTO) anode material demonstrates superior cycling performance due to its stable spinel structure and high lithiation/de-lithiation potential.Herein,a novel energy-saving solid-phase synthesis route ...Li_(4)Ti_(5)O_(12)(LTO) anode material demonstrates superior cycling performance due to its stable spinel structure and high lithiation/de-lithiation potential.Herein,a novel energy-saving solid-phase synthesis route for LTO has been successfully designed,employing the cheap industrial intermediate product of metatitanic acid (HTO) as titanium source.Through the in-situ Fourier transform infrared spectroscopy (FTIR)and ex-situ X-ray diffraction (XRD),it is revealed for the first time that the amorphous crystal structure of HTO is more conducive for the Li+insertion,making it possible to prepare LTO at a relatively lower sintering temperature.Utilizing the dehydration carbonization reaction between glucose and sulfuric acid,an ingenious strategy of glucose pre-coating is adopted to avoid the generation of Li_(2)SO_(4) impurity caused by the residual sulfuric acid on the surface of HTO,which meanwhile enhances the conductivity and inhibits the particle growth of LTO.The obtained ALTO@C anode material consequently exhibits excellent electrochemical performance that 132.0 m Ah g^(-1)is remained even at 20 C,and ultra low decay rate of 0.015% per cycle is achieved during 1000 cycles at 2 C.Remarkably,LiCoO_(2)//ALTO@C full cell delivers conspicuous low-temperature property (130.7 m Ah g^(-1)at 0.5 C and almost no attenuation after 300 cycles under-20℃).展开更多
Low Carbon Employment is an inevitable choice for the purpose of "energy-saving and emission reduction" and "promoting employment". By Multi-variable Linear Backward Regression method, this study presents an empir...Low Carbon Employment is an inevitable choice for the purpose of "energy-saving and emission reduction" and "promoting employment". By Multi-variable Linear Backward Regression method, this study presents an empirical analysis of the emplovment impact of policy variables indexes that involves economic pull, industry upgrading, population development, technical inputs and so on. The paper demonstrates that wide range offactors will affect low carbon employment, that industry upgrading will affect how carbon employment remarkably, that to increase years of people education will notably improve low carbon employment level of secondary vocational-technical labor, and that to raise technical inputs will significantly enhance college students' low carbon employment.展开更多
基金financial support from the Major Science and Technology Projects of Sichuan Province(2019KJT0078)the National Natural Science Foundation of China(51904193)the Fundamental Research Funds for the Central Universities。
文摘Li_(4)Ti_(5)O_(12)(LTO) anode material demonstrates superior cycling performance due to its stable spinel structure and high lithiation/de-lithiation potential.Herein,a novel energy-saving solid-phase synthesis route for LTO has been successfully designed,employing the cheap industrial intermediate product of metatitanic acid (HTO) as titanium source.Through the in-situ Fourier transform infrared spectroscopy (FTIR)and ex-situ X-ray diffraction (XRD),it is revealed for the first time that the amorphous crystal structure of HTO is more conducive for the Li+insertion,making it possible to prepare LTO at a relatively lower sintering temperature.Utilizing the dehydration carbonization reaction between glucose and sulfuric acid,an ingenious strategy of glucose pre-coating is adopted to avoid the generation of Li_(2)SO_(4) impurity caused by the residual sulfuric acid on the surface of HTO,which meanwhile enhances the conductivity and inhibits the particle growth of LTO.The obtained ALTO@C anode material consequently exhibits excellent electrochemical performance that 132.0 m Ah g^(-1)is remained even at 20 C,and ultra low decay rate of 0.015% per cycle is achieved during 1000 cycles at 2 C.Remarkably,LiCoO_(2)//ALTO@C full cell delivers conspicuous low-temperature property (130.7 m Ah g^(-1)at 0.5 C and almost no attenuation after 300 cycles under-20℃).
文摘Low Carbon Employment is an inevitable choice for the purpose of "energy-saving and emission reduction" and "promoting employment". By Multi-variable Linear Backward Regression method, this study presents an empirical analysis of the emplovment impact of policy variables indexes that involves economic pull, industry upgrading, population development, technical inputs and so on. The paper demonstrates that wide range offactors will affect low carbon employment, that industry upgrading will affect how carbon employment remarkably, that to increase years of people education will notably improve low carbon employment level of secondary vocational-technical labor, and that to raise technical inputs will significantly enhance college students' low carbon employment.