The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software f...The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software for simulation. It studies the isolation vibration of the engine mounting system and conducts goal optimization for fixed frequency. This paper uses two methods for optimization. One is to use the rational allocation of fixed frequency to optimize the fixed frequency, and the other is to use energy decoupling method to optimize the fixed frequency. It uses Adams software for simulation of the optimized fixed frequency and conducts comparison of simulated results. The simulated results show that the optimized energy distribution situation almost achieves 90%. Compared with original data, decoupling degree also has a very great improvement, illustrating that the optimized data has greater effect for the isolated vibration of engine, in order to further verify the feasibility of optimization design method.展开更多
In this paper,the metal hydraulic engine mount (HEM) with the orifice is presented,the construction of HEM is consist of hydraulic cylinder and the spring on the bottom,its mechanical model is given and dynamics equat...In this paper,the metal hydraulic engine mount (HEM) with the orifice is presented,the construction of HEM is consist of hydraulic cylinder and the spring on the bottom,its mechanical model is given and dynamics equations are set up with considering kinematics conditions and continuous of fluid,the dynamics behavior of HEM including dynamic stiffness of fluid and transferability of HEM are studied here.The example of hydraulic engine mount is calculated,it is shown that the vibration reduction performance of the hydraulic engine mount of this paper is better.The analysis method of vibration reduction behavior for HEM in this paper can be used in designing of the reduction vibration devices and the HEM in this paper can be used in the practical engineering for reduction vibration.展开更多
In this paper;the dynamic characteristics of a semi-active magnetorheological fluid(MRF)engine mount are studied.To do so,the performance of the MRF engine mount is experimentally examined in higher frequencies(50~170...In this paper;the dynamic characteristics of a semi-active magnetorheological fluid(MRF)engine mount are studied.To do so,the performance of the MRF engine mount is experimentally examined in higher frequencies(50~170 Hz)and the various amplitudes(0.01~0.2 mm).In such an examination,an MRF engine mount along with its magnetically biased is fabricated and successfully measured.In addition,the natural frequencies of the system are obtained by standard hammer modal test.For modelling the behavior of the system,a mass-spring-damper model with tuned PID coefficients based on Pessen integral of absolute error method is used.The parameters of such a model including mass,damping ratio,and stiffness are identified with the help of experimental modal tests and the recursive least square method(RLS).It is shown that using PID controller leads to reducing the vibration transmissibility in the resonance frequency(=93.45 Hz)with respect to the typical passive engine mount by a factor of 58%.The average of the vibration transmissibility decreasing is also 43%within frequency bandwidth(50~170 Hz).展开更多
To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compl...To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compliance of the decoupler chamber, effective piston area, fluid inertia and resistance of inertia track and direct-decoupler, are identified by means of experiments and finite element method (FEM). Dynamic behaviors are tested with elastomer test system for purpose of validating PHEM. With incorporation of inertia track and direct-decoupler, PHEM behaves effective and efficient vibration isolation in range of both low and high frequencies. The comparison of the numerical results with the experimental observations shows that the present PHEM achieves fairly good performance for the engine vibration isolation.展开更多
文摘The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software for simulation. It studies the isolation vibration of the engine mounting system and conducts goal optimization for fixed frequency. This paper uses two methods for optimization. One is to use the rational allocation of fixed frequency to optimize the fixed frequency, and the other is to use energy decoupling method to optimize the fixed frequency. It uses Adams software for simulation of the optimized fixed frequency and conducts comparison of simulated results. The simulated results show that the optimized energy distribution situation almost achieves 90%. Compared with original data, decoupling degree also has a very great improvement, illustrating that the optimized data has greater effect for the isolated vibration of engine, in order to further verify the feasibility of optimization design method.
基金Supported by National Fund Committee for Study Abroad
文摘In this paper,the metal hydraulic engine mount (HEM) with the orifice is presented,the construction of HEM is consist of hydraulic cylinder and the spring on the bottom,its mechanical model is given and dynamics equations are set up with considering kinematics conditions and continuous of fluid,the dynamics behavior of HEM including dynamic stiffness of fluid and transferability of HEM are studied here.The example of hydraulic engine mount is calculated,it is shown that the vibration reduction performance of the hydraulic engine mount of this paper is better.The analysis method of vibration reduction behavior for HEM in this paper can be used in designing of the reduction vibration devices and the HEM in this paper can be used in the practical engineering for reduction vibration.
文摘In this paper;the dynamic characteristics of a semi-active magnetorheological fluid(MRF)engine mount are studied.To do so,the performance of the MRF engine mount is experimentally examined in higher frequencies(50~170 Hz)and the various amplitudes(0.01~0.2 mm).In such an examination,an MRF engine mount along with its magnetically biased is fabricated and successfully measured.In addition,the natural frequencies of the system are obtained by standard hammer modal test.For modelling the behavior of the system,a mass-spring-damper model with tuned PID coefficients based on Pessen integral of absolute error method is used.The parameters of such a model including mass,damping ratio,and stiffness are identified with the help of experimental modal tests and the recursive least square method(RLS).It is shown that using PID controller leads to reducing the vibration transmissibility in the resonance frequency(=93.45 Hz)with respect to the typical passive engine mount by a factor of 58%.The average of the vibration transmissibility decreasing is also 43%within frequency bandwidth(50~170 Hz).
基金National Hi-tech Research Development Program of China(863 Program,No.2001AA505000-11)
文摘To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compliance of the decoupler chamber, effective piston area, fluid inertia and resistance of inertia track and direct-decoupler, are identified by means of experiments and finite element method (FEM). Dynamic behaviors are tested with elastomer test system for purpose of validating PHEM. With incorporation of inertia track and direct-decoupler, PHEM behaves effective and efficient vibration isolation in range of both low and high frequencies. The comparison of the numerical results with the experimental observations shows that the present PHEM achieves fairly good performance for the engine vibration isolation.